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Abstract 

Fly Ash (FA) is a widely used pozzolanic supplement in the production of sustainable concrete in 

the construction industry, presenting evident advantages, such as reducing CO2 emissions, cost-

efficient mixes, improved strength. In this research, to develop machine learning ML-based models 

to predict the compressive strength of various fly ash-based concretes. Three ensemble ML tech-

niques include Extra Trees regression (ETR), XGBoost (XGB), and Random Forest (RF) were ap-

plied to a credible dataset of 545 points collected from existing literature. Ten input parameters 

include cement, fine aggregate, coarse aggregate, type of concrete, admixtures, Fly Ash, water-to-

binder, temperature, curing days, and relative humidity. The performance of the models was as-

sessed using various statistical parameters including Mean Square Error (MSE), Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of determination (R2). Extra 

Trees regression model has achieved high predictive accuracy with MSE is 12.21 and R2 is 0.99, 

outperforming both RF and XGB for predicting the compressive strength in various FA based con-

cretes. This study emphasizes the potential of ML approaches predictive concrete compressive 

strength capacity, enabling optimized mix-designs that contribute to structural integrity and envi-

ronmental sustainability. 

Keywords: Various FA Concretes; Fly Ash; Compressive Strength; Prediction Modeling; Machine 

Learning Techniques 

 

1. Introduction 

Cement is essential to global infrastructure development. In 2020, worldwide cement                                  

production reached approximately 4.4 billion tons. Each ton of cement produced emits 0.9 tons of 

carbon dioxide (CO2). Consequently, the Portland industry is responsible for approximately 8% of 

global human induced CO2 emissions [1]. Although global concerns toward renewable energy 

sources, coal is still a major source of electricity generation in certain countries. The reliance leads 

to the production of significant amount of fly ash, a byproduct of coal combustion. The fly ash 

exhibits pozzolanic properties, which contribute to enhancing the strength of concretes [2]. Poz-

zolanic materials, which are rich in SiO2 and often contain Al2O3, are reactive enough to form 

calcium silicate hydrate (CSH) when mixed with water and CaO at ambient temperature thereby 

functioning as hydraulic cements [3]. The use of different reactive pozzolanas as replacement          

cementitious materials is rapidly increasing in the pursuit of more durable and high     
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performance concrete [4]. Certain fly ashes with elevated calcium content can exhibit cementitious 

properties by reacting with water to form hydrates even without the presence of calcium hydroxide. 

These pozzolanic reactions benefit concrete by increasing the amount of cementitious binder phases 

such as calcium-silicate-hydrate (C-S-H) and, to a lesser degree, calcium-aluminate hydrates. This 

contributes to enhanced long-term strength and decreased permeability of the concrete, both of 

which improve its overall durability [5]. 

Fly ash exhibits a variable composition based on the coal variety used and the design of boil-

ers, resulting in different classifications such as siliceous, calcareous, or silica calcareous fly ash 

[6].  Experiment using 0 – 50 % fly ash as a partial replacement of cement at 7,14,28 and 56 days 

after curing yielded optimal result for compressive strength [7]. However, using fly ash in concrete 

applications may result in slower early compressive strength development [8]. 

Conventional formulas and through experimental testing are commonly used to   forecast for 

compressive strength but can be time-consuming and expensive. Machine learning has gained pop-

ularity for its capacity to examine large datasets to make accurate predictions. This study focused 

on developing the machine learning model to predict compressive strength using fly ash-based 

concretes as a partial replacement of cement in various types of concretes. Using fly ash to replace 

cement in concrete can enhance durability, permeability, and decrease carbon emissions. To accu-

rately quantify the impact of variations in fly ash characteristics on compressive strength, complex 

predictive models are required.  

In the pursuit of sustainable practices, the use of alternative cementing materials has gained 

significant momentum. These materials, when used in partial replacement of cement, not only con-

tribute to waste reduction but also enhance the mechanical properties of concrete. The material 

benefits are shown in Fig 1. Among various SCMs, fly ash has emerged as a widely used and 

effective material due to its pozzolanic nature [9]. 

 

Figure 1. key benefits of incorporating Fly Ash (FA) in concrete, highlighting its role in en-

hancing strength, durability and sustainability. 

The application of machine learning (ML) to civil engineering has transformed the prediction 

of concrete qualities. ETR, XGB, and RF algorithms can describe complex interactions between 

input factors and compressive strength. ML models can manage nonlinear interactions among var-

iables, resulting in more accurate and efficient predictions than standard empirical methods. A 

study compared machine learning model techniques (ETR, XGB, and RF) to predict the compres-

sive strength of concrete with fly ash [9]. The models were refined using a grid search technique. 

The revised ETR model’s superior predictive performance suggests its potential for pre-assessing 

concrete based on mixed design proportions and other features. The choice of ML algorithm has a 

considerable impact on predictions accuracy. Ensemble approaches effectively manage variability 

in concrete mix designs. 
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Research is using ML algorithms, genetic algorithms, and particle swarm optimization to op-

timize hyperparameters and increase model reliability. Using models trained on related data sets to 

solve new problems has helped alleviate data shortage concerns. This approach creates robust pre-

dictions models with minimum experimental data, making it applicable to a wide range of concrete 

mix design options. Table 1 summarizes some of the studies on machine learning applications for 

industrial waste. 

Table 1. Prediction of concrete properties by using different industrial raw materials 

Sr No. Algorithm Name Notation Dataset Prediction Properties Material Used Year References 

1 Random Forest RF 131 Compressive Strength GGBS 2019 [10] 

2 

Artificial neural net-

work ANN 69 Compressive Strength FA, GGBS, RHA 2016 [11] 

3 

Adaptive neuro fuzzy 

inference system ANFIZ 7 Compressive Strength POFA 2020 [12] 

4 Multivariate MV 21 Compressive Strength 

Crumb rubber with 

SF 2020 [13] 

5 

Gene Expression 

Programming GEP 351 Compressive Strength GGBS 2020 [14] 

6 

Gene Expression 

Programming GEP 351 Compressive Strength 

NZ (Natural Zeo-

lite) 2019 [15] 

7 

Artificial neural net-

work ANN 169 Compressive Strength SF, GGBS 2016 [16] 

8 

Response Surface 

Method, Gene ex-

pression program-

ming RSM, GEP 108 Compressive Strength Steel Fibers 2020 [17] 

9 Random Forest RF 321 Compressive Strength GGBS, Alkali 2023 [18] 

10 

Artificial neuron net-

work ANN 205 Compressive Strength GGBFS, SF, RHA 2019 [19] 

As presented in Table 1, previous research has demonstrated the effectiveness of  machine 

learning approaches such as Random Forest (RF) [20], Artificial Neural      Networks (ANN) 

[21], and Boosting techniques [22] were adopted to predict the       compressive strength of spe-

cific concrete incorporating industrial by-product. However, most of these studies were limited by 

small datasets, focused on specific types of concrete such as high-strength concrete  [23], normal 

concrete [24], eco-friendly concrete [25], and applied algorithms with limited capability and lack-

ing comprehensive models. In this   research, addresses these gaps by utilizing a large and more 

diverse dataset (n =545)     incorporating various concretes samples. By implementing advanced 

ensemble ML  models ETR, XGB, and RF are equipped to model non-linear interactions, mini-

mize    statistics measurement errors, and enhance the reliability of compressive strength     pre-

diction of various FA-based concretes, non-linear interactions minimize statistics measurement er-

rors, and enhance the reliability of compressive strength prediction of various FA-based concretes. 

 

2. Materials and Methods 

The aim of this research is to create machine learning models that can accurately and reliably 

forecast the compressive strength of different concretes that include fly ash in place of some of the 

cement. Data collection, data preprocessing, feature selection, model creation, training, and other 
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stages comprise the approach used in this study. Testing, assessment, and ultimate choice of the 

best model. To assess compressive strength values using a variety of input variables, a dataset was 

assembled utilizing experimental data gathered from numerous published publications.  

To guarantee consistency and applicability for machine learning models, the    gathered da-

taset underwent processing steps in preprocessing. The methodology used a methodical, multi-

phase approach to guarantee accuracy, reproducibility, and        consistency. These stages con-

sist of training the model, preparing the database, and     assessing performance with statistical 

measures. 

In the initial stage, the database was assembled from published experimental      research 

involving concrete mixtures and different proportions of fly ash employed as a partial cement sub-

stitute. Critical input characteristics such as cement and fly ash      concentrations, water-to-ce-

ment ratio, proportions of fine and coarse aggregates, curing age, and measured compressive 

strength were included in every dataset entry. 

Table 2. Descriptive statistical of input and output parameter. 

Parameters 

Cement 

(kg/m3) 

Fine    

Aggregate 

(kg/m3) 

Coarse 

 Aggre-

gate 

(kg/m3) 

ADMIXTURE 

(%) 

Fly 

Ash 

(%) 

W/B Temperature 

(°C) 

Curing 

(Days) 

Relative 

Humidity 

(%) 

Compressive 

Strength 

(MPa) 

Input Input Input Input Input Input Input Input Input Output 

Mean 406.38 672.59246 972.58092 1.477449541 10.753 0.44 28.30825688 31.35 81.601835 44.34590826 

Median 374 695 1000 1.2 10 0.4 25 28 90 36.78 

Mode 360 600 1000 1 10 0.45 27 28 95 45 

Standard 

deviation 184.948 219.95581 269.79084 1.174952561 11.135 1.15 13.02643049 32.225 16.582603 30.62117451 

Variation 34205.8 48380.558 72787.095 1.38051352 124 1.31 169.6878913 1038.5 274.98272 937.6563283 

Kurtosis 4.44028 1.3852421 2.4330448 3.867383277 27.427 535 17.95181319 6.1877 -1.350765 3.482628656 

Skewness 1.66659 -0.998818 -1.081946 2.084807159 4.1546 23 3.905943721 2.27 -0.61625 1.85599127 

Min 0 10 8.2 0.27 0 0.17 20 1 50 2.5 

Max 1120 1030 1525 6 100 27 120 180 100 160 

Range 1120 1020 1516.8 5.73 100 26.8 100 179 50 157.5 

Sum 221477 366562.89 530056.6 805.21 5860.5 241 15428 17086 44473 24168.52 

Count 545 545 545 545 545 545 545 545 545 545 

The model was trained 80% of the dataset, while 20% of the dataset was used to test the model’s 

performance. Among the algorithms tested, Extra Trees regression (ETR) was  selected for its 

strong predictive capacity. XG Boost is resilient to multi-collinearity, while Random Forest (RF) 

is good at training and lowering variance. The trained models were evaluated for the test dataset, 

and predictive performance evaluation using statistical measures such as mean squared error 

(MSE), mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determi-

nation (R2) were the main metrics employed are shown in Figure 2. 
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Figure 2. Statistical measurements metrics for the model evaluation. 

 

 

                                              Figure 3. Correlation Heatmap matrix.  

 

2.1 Overview of AI in Civil Engineering 

Artificial Intelligence has become more popular and has been used in many different scientific 

fields. The Extra Trees Regression is one of the most potent machine learning algorithms in data 

science, and it is widely utilized in the building sector. Numerous  technical issues in earth science, 

environmental science, geotechnical engineering, and civil engineering have been successfully re-

solved by the ET model [26]. 

2.2. Machine Learning Algorithms 

Leveraging machine learning makes it possible for machines to process data more efficiently. 

Sometimes extracting valuable insights from data requires more than just  looking at it. In these 

situations, machine learning methods are used to find hidden patterns and comprehend the data 

more thoroughly [27]. In civil engineering, machine learning has emerged as a potent tool, partic-

ularly for mix design optimization and concrete behavior prediction. In this study, machine learning 

techniques including Extra Trees regression (ETR), XGBoost (XGB), and Random Forest (RF), 

were used to predict compressive strength. An ensemble-based technique called Extra Trees is well 

known for lowering variance and enhancing model stability. By combining the output of several  

decision trees, random forest, a popular ensemble technique, offers reliable overfitting. Because it 

can manage correlated input features with little effect on model performance, XGBoost is resilient 
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to multicollinearity. The effectiveness of these algorithms in        determining the mechanical 

behavior of concrete and improving computational speed has been highlighted by recent studies. 

Using these methods, the current study creates a   predictive model for sustainable concrete, eval-

uates its performance indicators, and    determines which model is the most accurate and compu-

tationally efficient for real-world applications.  

 

    

 

 Figure 4. Flowchart of Machine Learning Algorithms. 

2.2.1. Extra Tree Regression (ETR) 

The tree-based ensemble approaches like Random Forest and Bootstrap Aggregation (Bag-

ging) are closely connected to the Extra Trees (ETR) Regressor, an ensemble method constructed 

from numerous decision trees. Using the training data, the Extra Trees      algorithm builds a nu-

merous number of unpruned decision trees. It averages the outputs of each individual tree to pro-

duce final predictions in regression problems. Using the training data, the Extra Trees algorithms 

create an unpruned decisions tree. The average of the outputs from each tree in the ensemble is 

used to provide the final predictions for regression problems [28]. There are two main differences 

between Random Forests (RFs) and Extra Trees Regressors (ETRs). First, instead of picking the 

best split, ETRs select split points at random from a range of potential thresholds. Second, they 

reduce bias by    growing each tree using entire training dataset, rather than relying on bootstrap 

sampling [27]. The splitting process in the Extra Trees Regressor is controlled by two parameters: 

k and nmin. Here, k represents the number of features randomly selected at each node, while nmin 

denotes the minimum number of samples required to split a node. These parameters influence both 

the effectiveness of attribute selection and the level of noise in the average output. Using these 

parameters improves the models precision and reduces overfitting [29]. 
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2.2.2. Random Forest (RF)  

The random forest algorithm is a machine learning method commonly applied to both classi-

fication and regression problems. It is a clever application of bootstrap bagging (or simply bagging). 

This method involves two randomization steps: first it uses the   bootstrap technique to create ran-

dom samples with replacement, and second, it selects random subsets of features from the original 

dataset in random order. These two diverse datasets are highly varied, which helps reduce variance. 

Using these datasets,             classification and regression trees (CARTs) are built. A forest is 

then formed by combining multiple CARTs, with different data randomly assigned to these trees 

in terms of both rows and columns. 

It consists of multiple decision trees (DTs). For classification purposes, the final   prediction 

is determined by the significant decision across all trees, while for regression tasks, the predictions 

the average of the outputs from all the trees. RF is highly versatile and can be used for large-scale 

problems [30], [31].  

2.2.3. XGBoost  

XGBoost is a robust and efficient machine learning algorithm known for builds a strong pre-

dictive models by combining multiple weak learners, typically decision trees, in a sequential man-

ners [32]. Each tree is trained to correct the errors made by the previous ones, improving the 

model’s overall performance. Large dataset handling, regularization strategies to avoid overlifting, 

and parallel processing to speed up training. Additionally, it provides early halting to prevent need-

less computation and efficiently handles missing data. Because of these characteristics, XGB is a 

well-known method for both regression and classification problems in a wide range of challenges. 

2.3. Model Evaluation Criterion 

Several statistical errors, including Mean Absolute Error (MAE), Mean Square Error (MSE), 

Root Mean Squared Error (RMSE), and the coefficient of Determination (R2), can be used to eval-

uate how well a created model performs on training and trial datasets. R2 is generally thought to be 

the best of these for assessing model correctness. A variety of modelling techniques have been used 

to forecast the mechanical properties of concrete due to the quick development of artificial intelli-

gence. These error measures, which provide distinct insights into the type and magnitude of pre-

diction mistakes, are calculated as part of the statistical analysis utilized in this work to assess model 

performance. 

The average absolute difference between the expected and actual values is determined by 

MAE, which calculates the average absolute difference between the predicted and actual values. It 

is less sensitive to outliers than MSE. MAE provides another perspective on model accuracy, espe-

cially useful for models dealing with real-world noisy concrete data. MAE value can be calculated 

with equation 1:                                                                                                                                      

               MAE = 
1

𝑛
 ∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1                                       (1) 

The errors on average of the squares between predicted values fi and actual (true) values pi 

measured using MSE. A lower MSE indicates that the model’s predictions are closer to the actual 

values. MSE helps evaluate the prediction accuracy of the XGB,    Random Forest, and Extra 

Trees models for compressive strength.  The MSE can be   calculated using equation 2: 

                                           MSE = 
1

𝑛
 ∑ (𝑦𝑖 − 𝑦)2𝑛

𝑖=1                                        (2) 

RMSE penalizes underestimates more than overestimates and is helpful when actual values 

span multiple orders of magnitude. Useful in civil engineering datasets where compressive strength 

can vary greatly. RMSE supports evaluating model robustness when dealing with highly skewed 

or non-linear concrete strength data. The evaluation of RMSLE using equation 3: 

               RMSE = √
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=0

𝑛
                                           (3) 
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R2 explains how well the model’s predictions approximate the actual data. The value of R2 

(closer to 1) indicates better performance. R2 quantifies how well fly ash data inputs explain varia-

bility in concrete strength predictions. The R2 value is calculated by equation 4:  

               R2 = 1-
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

                                  (4)                                                            

3. Results and Discussion 

In this research study, a machine learning (ML) model was developed to predict the compres-

sive strength of concretes incorporating fly ash as a partial replacement for     cement. The algo-

rithms, including ETR, XGB, and RF, were tested for accuracy, with extra trees regression model 

demonstrating the highest prediction performance based on R2 score, MAE, RMSE and MSE. The 

dataset used was compiled from existing experimental studies and pre-processed for optimal train-

ing. The model effectively captured nonlinear relationship between input variables such as mix 

Cement (Kg/m3), Fine Aggregates (Kg/m3), Coarse Aggregates (Kg/m3), Concrete Type, admixture 

(%), Fly ash (%), W/B, Temperature (°C), curing (days), relative humidity (RH) 

Figure 5. Non-linear relationships between input features and compressive strength (MPa). 
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3.1. Comparison between applied machine learning models 

The model’s performance was evaluated based on MAE, RMLSE, MSE, and R2 values. The 

findings reveal that the ETR model had the highest accuracy, with an MAE of 2.85, the lowest 

RMSE of 3.99, the lowest MSE of 12.21, and the highest R2 of 0.99, this    demonstrates strong 

predictive power. Other models, such as XGB and RF also have high R2 values 0.98 and 0.97, 

indicating occasional prediction potential. Ensemble based models ET have higher predictions ac-

curacy for this dataset. These studies show that ensemble learning can accurately forecast the 

strength of various concretes. The Extra Trees model outperformed other models, demonstrating 

the effectiveness of ensemble-based       approaches in dealing with nonlinear relationships and 

complicated feature interactions.  

 

Figure 6. Comparison of Model Performance based on Coefficient of Correlation (R2) 

 

 

Figure 7. Comparison of Model Performance metrics errors based on MSE, RMSE, MAE. 

The comparison highlights how each algorithm performs in terms of predictive accuracy, 

likely based on metrices such as R2, MSE, RMSLE, and MAE. Among these,   ensemble models 

ETR shows superior performance, indicating their effectiveness in   handling nonlinear and com-

plex relationships in concretes strength prediction. 
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Table 3. Performance Comparison of Extra Tree, Random Forest, and XGBoost models for  

Predicting Compressive Strength Based on MAE, RMLSE, MSE, and R2 Value Metrics 

 

 

 

 

 

 

The extra trees model demonstrates the strongest performance among the three    algorithms 

based on key evaluation metrics. ETR has the Lowest Mean Absolute Error (MAE) of 2.85, indi-

cating the smallest average prediction error. Additionally, it records the lowest Root Mean Squared 

Error (RMSE) of 3.99, which suggests better handling of exponential or skewed data distributions. 

With a Mean Squared error (MSE) of 12.21, it reflects fewer large prediction errors compared to 

the other models. Moreover, its R2 value of 0.99 is the highest, signifying that it explains the most 

variance in the target variable. These results highlight the ETR model as the most accurate and 

reliable choice among the three. 

Figure 8. Comparison Actual vs Predicted values graph using Extra Trees Regression technique. 

Figure 9. Comparison of Actual vs Predicted values graph using XGBoost technique 

Models MSE RMSE MAE R2 Value 

Extra Trees Regression 12.21 3.99 2.85 0.99 

XGBoost 15.97 4.6 3.19 0.982 

Random Forest 26.45 5.14 3.69 0.97 
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Figure 10. Random Forest Technique Actual vs Predicted values graph 

The prediction graphs compare the prediction accuracy of different machine learning algo-

rithms used in the literature to forecast the compressive strength of various concretes incorporating 

supplementary material such as Fly Ash. Algorithms like ETR, XGB and RF are evaluated. The 

actual versus prediction value graphs show that the ETR provides more accurate predictions, with 

data points closely aligned along the reference line, indicating that it effectively captures the fly 

ash dosage on strength of different concretes. XGBoost, while still showing a strong correlation, 

demonstrates the largest spread and some deviation from ideal predictions. The Random Forest 

model also performs well, though there is slightly more dispersion in the data points as compared 

to Extra Trees. These graphs highlight that ETR model is most effective in predicting compressive 

strength in various types of concrete. The investigation confirms that ML models,       especially 

tree-based ensembles the influence of fly ash dosage, offering valuable insights for optimizing con-

crete mix designs in different types of various concretes. 

Figure 11. Comparison of ETR, XGB, and RF models on training vs testing with correlation coef-

ficient (R2) 

The performance of the ensemble ML models on training and testing evaluation are presented 

in Fig 6. The Extra Trees Regression (ETR) approach achieved R2 is 1 on the training set and 0.99 

on the testing set, showing potential predictive accuracy and minimal overfitting. Random Forest 
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(RF) and XGBoost also indicate strong capacity with less difference between training and testing 

R2 evaluation. This analysis affirms the predictability and robustness of the models in forecasting 

the compressive strength of   fly-ash based concretes. The consistency of these algorithms demon-

strates the effectiveness of ensemble modeling in handling complex non-linear relationships. 

 

3.2. Sensitivity Analysis 

Ten parameters, including concrete type, cement (Kg/m3), fine aggregate (Kg/m3), coarse ag-

gregate (Kg/m3), admixtures (%), Fly Ash (%), water-to-binder (W/B),         temperature (°C), 

curing (Days), and relative humidity (%) were used as an input features. shown In Figure 3, show 

the impact of each input parameter on the model development process. The Concrete type and mix 

deign have been found to have a greater influence on compressive strength compared to other input 

feature. 

 

Figure 12. Contribution of input features to predict compressive strength 

The above graph presents the sensitivity of different features used in the machine learning 

models to predict the compressive strength of fly ash-based concretes. The   analysis identified, 

concrete type and mix design have been found to have a greater     influence with higher sensi-

tivity score on compressive strength model’s predictions as compared to other input features. The 

more critical parameter is in determining       compressive strength of different concretes. This 

insight helps optimize mix designs by focusing on the most influential components. 

4. Conclusions 

The use of machine learning to assess compressive strength of various concrete types using 

FA highlights the potential of data-driven techniques in civil engineering. This technique encour-

ages sustainable construction practices by encouraging the use of the use of industrial by products 

like fly ash, while simultaneously increasing mix design efficiency. The Extra Trees model per-

forms well, allowing engineers to make sustainable decisions. The ML model accurately predicts 

compressive strength of various concrete kinds using input values specified in the sensitivity anal-

ysis section. Extra Trees outperformed other models, indicating their suitability for capturing non-

linear relationships in various concretes mixed data. This approach reduces the need for expensive 

and time-consuming lab experiments in early design phases. Fly Sash as a partial cement replace-

ment supports eco-friendly construction while maintaining required strength characteristics.  

Ensemble machine learning (ML) techniques have proven to be effective in accurately pre-

dicting the compressive strength of various types of concretes. To enhance the precision of ML 

algorithms results by applying the multiple predictions on developed ML model. The integration 

of ML techniques in civil engineering not only enables efficient prediction of concrete properties 
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but also helps reduce overall project costs and shortens the time required to achieve the target out-

comes. 
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