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Abstract

Recently, deep learning (DL) models have shown tremendous potential for hydrological prediction,
reservoir management, and operational planning. However, their effectiveness in predicting reser-
voir inflows over extended time horizons remains limited. Recent advancements in DL algorithms
have improved the accuracy of inflow forecasts, yet most studies emphasize short-term applications
or real-time operations. This study proposes a novel multi-step forecasting framework to enhance
long-term predictions of reservoir inflow and water supply. Using snow-water equivalent (SWE)
and historical inflow data, we trained a DL model built on a convolutional neural network (CNN)—
long short-term memory (LSTM) encoder—decoder architecture to forecast inflows during the crit-
ical March—August runoff period. Model architecture and hyper-parameters were tuned via
multi-fold cross-validation of the time series, examining various CNN- and LSTM-based encoder—
decoder adaptations. The methodology was applied to 40 years of SWE and inflow data from Jor-
danelle Reservoir, Utah. The optimal configuration—an LSTM encoder—decoder with 16 nodes per
layer—achieved substantial improvements in long-term forecast accuracy. We also assessed the
trade-off between model complexity and performance by benchmarking against a process-driven
ensemble streamflow prediction (ESP) model and classical statistical methods (SARIMA, VAR,
TBATS). The DL approach outperformed the statistical models for long-term water-supply fore-
casts and achieved accuracy comparable to the ESP model’s 50 % exceedance-probability forecast.
Overall, these results highlight the promise of advanced DL methods for enhancing long-term hy-
drological forecasting and water-resource management.
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1. Introduction

Conventional statistical techniques —including Vector Auto-Regression (VAR), Seasonal
Auto-Regressive Integrated Moving Average (SARIMA), the Trigonometric Box-Cox transfor-
mation approach (1), and the TBATS method that blends Box-Cox, ARMA errors and seasonal
components (?)—have long been used to predict reservoir-inflow and -outflow patterns. These
models leverage historical data and inherent seasonal trends to elucidate water-resource dynamics.
Although effective for short-term forecasts, they struggle with long-range predictions because
auto-regressive components tend to converge on the series mean (4). Long-term hydrological fore-
casts are further hampered by hydro-meteorological variability—especially in snow-dominated
catchments (5)—and by nonlinear, weather-driven patterns that violate the linear assumptions of
most statistical models.
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Physical hydrological models, by contrast, simulate watershed processes with probabilistic ensem-
bles driven by atmospheric inputs, then apply statistical post-processing to quantify uncer-
tainty (6, 7). A leading example is the Ensemble Streamflow Prediction (ESP) framework (8),
widely used for long-term water-supply forecasting. ESP initializes model states from current basin
conditions and produces probabilistic inflow predictions; however, it does not ingest observed
snow-water equivalent (SWE) directly, relying instead on snowpack dynamics inferred from tem-
perature and precipitation inputs (9). When snowpack variability is large, ESP accuracy can de-
cline (10).

These limitations underscore the need for advanced methods that capture nonlinear relationships
and account for hydrological variability. Machine-learning approaches provide a data-driven alter-
native and have shown success in rainfall-runoff forecasting (11), hydropower prediction (12), and
spatial SWE estimation (13), all without explicit process assumptions. Deep-learning (DL) models
have pushed this further: encoder—decoder architectures can learn temporal dependencies and non-
linear interactions, making them well suited to multi-step forecasting (14). Yet most DL studies
still emphasize short-term horizons.

To bridge this gap, we develop a multi-step forecasting scheme that trains encoder—decoder net-
works on historical SWE and reservoir-inflow data to produce long-term predictions. Four archi-
tectures are examined—CNN-LSTM, residual CNN-LSTM, vanilla LSTM-LSTM, and residual
LSTM-LSTM—each combining convolutional (for parallel extraction of fixed-window features)
and recurrent layers (for sequential dependencies). Residual connections are included in some var-
iants to improve gradient flow and mitigate vanishing-gradient issues (15, 16).

These DL models are benchmarked against ESP and the classical statistical approaches (SARIMA,
VAR, TBATS) to evaluate long-range performance. The study addresses three questions:

e Complexity vs. accuracy — What model complexity yields the best long-term water-sup-
ply forecasts?

e Conditions for DL superiority — Under what hydrological or data conditions does the
proposed DL model outperform benchmarks?

e Data-driven vs. process-based — How do purely data-driven methods compare with pro-
cess-based physical models for multi-month reservoir-inflow prediction?

2. Materials and Methods
2.1 Site

This study focuses on the Jordanelle Reservoir, a key component of the Provo River Project and an
essential water storage facility for central Utah. The reservoir is situated in Wasatch County, Utah,
along the Provo River, upstream of Heber City. Its watershed encompasses a drainage area of ap-
proximately 234 square miles, monitored at the Provo River near Hailstone gauging station
(10155000). The region receives an average annual precipitation of 25.8 inches, with runoff pri-
marily derived from spring snowmelt, contributing significantly to its inflow from April through
June.

Completed in 1993 by the Bureau of Reclamation, Jordanelle Reservoir has a total storage
capacity of 320,300 acre-feet, covering a surface area of up to 3,068 acres at full pool. The reservoir
is a vital part of Utah’s water management system, providing water for municipal, industrial, and
agricultural use while supporting recreational activities. Water releases are regulated through the
Jordanelle Dam, which incorporates outlet works capable of discharging up to 8,000 cubic feet per
second (cfs) . Additionally, the reservoir serves as a crucial buffer for managing downstream flow
into the Deer Creek Reservoir and mitigating flood risks in the Provo River basin .

Managed by the Central Utah Water Conservancy District (CUWCD), Jordanelle Reservoir
forms part of a broader water infrastructure network designed to meet the growing demands of
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Utah’s population. The reservoir plays an integral role in water storage and delivery under the Cen-
tral Utah Project, ensuring the sustainable allocation of resources across the Wasatch Front. Fig-
ure 1 highlights the geographic location of Jordanelle Reservoir and its proximity to snow telemetry
(SNOTEL) sites, crucial for tracking snowpack dynamics and forecasting runoff for operational

planning.
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Figure 1: Study site location: Jordanelle Reservoir, Utah
2.2 Datasets

The dataset utilized for training the model originated from the operational archives of the
Central Utah Water Conservancy District (CUWCD) and the snow telemetry (SNOTEL) network,
which is managed by the National Resource Conservation Service (NRCS) . Reservoir inflow data
were computed using changes in reservoir water levels, adjusted to account for losses such as seep-
age and evaporation, and incorporating releases into Rock Creek. This methodology facilitated pre-
cise calculations of storage variations in acre-feet .

Two key datasets formed the foundation of this study: reservoir inflow and snow-water equiv-
alent (SWE). SWE represents the amount of water (in inches) that would result from melting the
snowpack. Historical daily records for Rock Creek at the Jordanelle Reservoir span from January
1990 to the present, with regular updates. The CUWCD ensures high-quality, gap-free reservoir
inflow data, eliminating the need for interpolation (Figure 2).
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Figure 2: Historical daily inflow patterns (top) and March-August inflow volumes (bottom)
at Jordanelle

Reservoir inflow patterns exhibit a seasonal runoff trend, predominantly driven by snowmelt,
which typically peaks between April and August. This study assumes that critical water storage
decisions must be finalized by late March to prepare for the snowmelt season. Therefore, the fore-
casting period from March to August was emphasized, necessitating a model that can accurately
represent long-term temporal trends .

The SWE data were obtained from the NRCS SNOTEL network, covering the same
timeframe as the reservoir inflow data (Table 1).
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Tablel: Metadata for Snow Telemetry Stations (NRCS)

St- Id Location Lon Lat
340:UTa:SNoTL  Breavers Devide -109.987 39.206
346:UTa:SNoTL Laughton -110.466 39.193
358:UTa:SNoTL Black Bear -109.480 39.175
356:UTa:SNoTL Chepeta Way -108.910 39.367
462:UTa:SNoTL Current River -109.979 39.953
461:UTa:SNoTL  Five Guys Creek  -109.362 39.311
577:UTa:SNoTL Hayden Fork -109.776  39.389
579:UTa:SNoTL Kings Cabin -108.449  39.309
586:UTa:SNoTL Riverfork #1 -109.329 39.191
583:UTa:SNoTL  Riverfork Basin ~ -109.515 39.331
698:UTa:SNoTL  Miller-D North ~ -110.520 39.252
661:UTa:SNoTL Dining Forks -111.485 39.089
633:UTa:SNoTL  Mosby Mountain  -108.789  39.202
624:UTa:SNoTL Parleys Way -110.513 39.354
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St- 1d Location Lon Lat
750:UTa:SNoTL Red Rock Canyon -109.586 39.144
783:UTa:SONTL  R.B Settlement  -111.102 39.999
713:UTa:SNoTL  S. Moreshouse ~ -109.981 39.381
794:UTa:SNoTL  Thanos Canyon  -110.418 39.218
820:UTa:SNoTL Gt. T. Divide -110.500 39.024
828:UTa:SNoTL Trivial Lake -109.840 39.271
833:UTa:SNoTL Salmon River -108.576  39.332

The monitoring stations provided high-quality data, with fewer than three days of missing
values per site. Where gaps existed, they were addressed using interpolation techniques. The pri-
mary objective of the analysis was to model the relationship between SWE (Figure 3) and reservoir

inflow (Figure 2).
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Figure 3: Snow water equivalent (SWE) measurements (in inches) over five continuous water

years.

For model training, the daily data were aggregated into weekly averages and scaled to a nor-
malized range of 0 to 1 to align with the deep learning model’s activation function (Section 2.3). A
sliding window approach was adopted, utilizing a 20-week input period to forecast the subsequent
26 weeks, corresponding to the runoff season (March to August). The 20-week window was
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selected based on typical SWE accumulation durations, which vary from 15 to 25 weeks depending
on winter precipitation patterns. This configuration reflects the most representative conditions
across multiple years, providing an optimal basis for training the model.

2.3 Encoder-Decoder DL Model

The primary aim of the model is to forecast future reservoir inflow sequences based on his-
torical inputs, incorporating time-series data for reservoir inflow and SWE. This is achieved
through a multivariate sequence-to-sequence prediction framework, consisting of two main com-
ponents: an encoder that converts the input sequence into a fixed-length representation, and a de-
coder that reconstructs this representation into the predicted output sequence . The decoder is fur-
ther supplemented by a fully connected time-distributed layer, which refines the predictions into
the final output sequence.

As depicted in Figure 4, the model incorporates four different variants, each utilizing a sliding
window approach where multiple time-series variables are processed to produce corresponding
output windows.

This architecture has proven effective for a variety of sequence-to-sequence applications, in-
cluding flood prediction , traffic flow estimation , weather forecasting , and solar performance
modeling . The implementation of each model variant was carried out using Python and the Keras
library . The exponential linear unit (ELU) activation function was employed to enhance learning
performance, while the Adam optimizer was utilized for efficient weight optimization across the
network.

2.4 Encoder-Decoder Variants

Recurrent neural networks (RNNs) are well-suited for sequential data processing but often
face challenges when input-output relationships span extended time gaps, leading to difficulties in
handling long-term dependencies. Long short-term memory (LSTM) networks address this limita-
tion through a cell state and gated mechanisms that efficiently manage information retention and
removal across time steps .

The Encoder-Decoder framework offers significant advantages for sequence-to-sequence
tasks by encoding variable-length sequences into fixed-length vectors, ensuring adaptability across
diverse datasets . Using LSTMs within this framework enhances its ability to capture long-term
dependencies, overcoming the limitations of traditional RNNs . The framework’s modularity sup-
ports a wide range of architectures, including CNN-based encoders for feature extraction and
LSTM decoders for temporal sequence modeling . Residual connections improve gradient flow and
facilitate efficient training of deeper networks , while causal padding in CNN encoders ensures
temporal integrity by preventing look-ahead bias .

Figure 4 illustrates four Encoder-Decoder model variants, each incorporating varying degrees
of architectural complexity:

1. **LSTM Encoder-LSTM Decoder**: This variant integrates an LSTM-based encoder and
decoder, linked through a repeat vector to align the encoded features with the decoder’s input. The
decoder reconstructs the output sequence, which is refined by a time-distributed Dense layer. This
layer applies shared weights across time steps, ensuring consistent output generation.
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Figure 4: Architecture of Encoder-Decoder variants.
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2. **Residual LSTM Encoder-LSTM Decoder**: An extension of the LSTM-LSTM model,
this variant incorporates residual connections between layers to enhance gradient flow and error
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propagation. These connections support the network in maintaining greater depth without compro-
mising optimization efficiency .

3. **CNN Encoder-LSTM Decoder**: This model replaces the LSTM encoder with a one-
dimensional convolutional neural network (CNN) that processes time-series data. The CNN cap-
tures local patterns through hierarchical representations, while causal padding preserves temporal
order, preventing any look-ahead bias .

4. **Residual CNN Encoder-LSTM Decoder**: This architecture builds on the CNN-LSTM
variant by incorporating residual connections within the CNN-based encoder. These connections
improve feature extraction and gradient flow, enabling the model to learn hierarchical abstractions
effectively. Pooling layers at the end of each residual block condense the input features into mean-
ingful representations.

In the CNN-based models, the encoder progressively reduces the input matrix’s dimensions
while abstracting relevant features. Convolutional filters and pooling layers create a condensed
feature map, with max pooling applied to retain key elements. The resulting features are flattened
and passed to the LSTM decoder, which processes the sequence to generate the output.

This combination of LSTM and CNN architectures leverages their respective strengths, ena-
bling the model to identify both localized patterns and long-term dependencies within the input
data, ensuring a robust and flexible predictive framework.

2.5 Model Selection

The historical dataset, spanning forty years for inflow and snow water equivalent, is expanded
to enhance the model’s ability to generalize to unseen scenarios. To achieve this, the index sequen-
tial method (ISM) is utilized, a technique commonly applied in hydrological modeling, particularly
in the Colorado River Basin . ISM generates synthetic hydrological sequences by incrementally
shifting the historical record by one water year, broadening the range of potential outcomes and
accounting for uncertainties in future hydrological behavior due to natural variability and human-
induced climate changes .

To address ISM’s limitations in capturing extreme events, such as extended droughts, this
study implements a modified approach. Water years are treated as discrete blocks and randomly
shuffled to introduce additional variability. This method, referred to as water year block disaggre-
gation, diversifies the training dataset, improving the model’s robustness . Additionally, each water
year is randomly scaled within a range of 0.4 to 1.4, preserving seasonal trends while introducing
magnitude variability. This adjustment allows the model to train on a wider spectrum of hydrolog-
ical extremes, expanding the training dataset fivefold before cross-validation.

Hyper-parameter tuning for each model was performed using five-fold time-series cross-val-
idation. Data from 2011-2015 are utilized for hyperparameter optimization, while the evaluation
period from 2016-2020 is used to identify the best-performing architecture. Each Encoder-Decoder
variant was tested with configurations of 8, 16, and 32 LSTM nodes, and CNN kernel sizes of 2, 4,
and 8, resulting in a total of 12 configurations. Residual connections are incorporated to enhance
gradient flow, and a Dense layer with time-distributed functionality was utilized to process the
decoder’s output efficiently.

The training process connects layers of nodes, where each node processes input data and for-
wards it using an activation function. In CNN-based models, kernels slide over input sequences to
extract features, while filters consolidate these features into maps. The input data comprise SWE
and reservoir inflow time-series from November to March, while the target output predicts runoff
for March to August.

To prevent overfitting during training, an early stopping mechanism is implemented, which
halts the training process if no reduction in mean squared error (MSE) is observed over 10 consec-
utive epochs. This approach helps avoid overfitting by preventing the model from excessively
adapting to the training data. Additionally, the total number of epochs is capped at 50, ensuring a
controlled training duration. The batch size is carefully selected to determine the fraction of data
processed in each training iteration, balancing computational efficiency and model convergence.
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The evaluation of model performance is carried out using a comprehensive set of metrics to
ensure a robust assessment. These metrics include normalized root mean squared error, mean ab-
solute error, Nash-Sutcliffe efficiency, median absolute error, and explained variance. Each metric
provides unique insights into different aspects of the model’s predictive capabilities, enabling a
thorough evaluation of accuracy, consistency, and reliability. This multifaceted evaluation frame-
work ensures that the model’s performance is not only accurate but also generalizable to unseen
data.
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The dataset spans 46 weeks, divided into a 20-week input window (November to March) and
a 26-week output window (March to August). Model performance is ranked based on the average
metric scores over the five-year evaluation period, ensuring robust and reliable predictions.

2.6 Quantification of Uncertainty

This study investigates uncertainty in two key dimensions: the predictive accuracy of the
model and the intrinsic variability in reservoir inflow patterns, particularly during weekly averages
and the critical March-to-August runoff period. Predictive uncertainty is evaluated through a 95%
confidence interval derived from an ensemble of model simulations. Given the stochastic nature of
deep learning models, each training iteration introduces slight variations in the forecast outcomes.
To capture this variability, the model is trained multiple times, generating a distribution of predic-
tions for each forecast time step. This distribution is assumed to follow a normal distribution, con-
sistent with the central limit theorem as the number of ensemble members increases.

Outliers within the forecasted results are identified using the Tukey method, which flags data
points lying beyond the whiskers in a boxplot representation . This approach ensures that anoma-
lous predictions, which could adversely impact model interpretation, are systematically recognized
and addressed.

Additionally, the study emphasizes the importance of understanding inflow variability, which
is critical for effective water resource planning and management. The variability in inflow patterns
is influenced by complex hydro-meteorological factors, including snowmelt timing, precipitation
intensity, and temperature fluctuations. To provide a clear visualization of this variability, exceed-
ance probability plots are employed. These plots illustrate the likelihood of inflows exceeding spe-
cific thresholds over the forecast horizon, offering valuable insights into potential risks and resource
allocation needs during peak and low inflow periods.

By combining predictive uncertainty analysis with a focus on inflow variability, the study
provides a comprehensive framework to evaluate model reliability and inform decision-making in
the context of reservoir management. This dual approach not only enhances the robustness of the
forecasting methodology but also supports adaptive strategies to mitigate the impact of uncertain
and dynamic hydrological conditions.
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The second component of uncertainty concerns the variability in reservoir inflow, which
serves as the primary forecast target. This variability is visualized using an exceedance probability
plot for the multi-step forecast period (Figure 5).
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Figure 5: Exceedance probabilities of inflow evaluated for weekly averages and total inflow
during the March-August period.

The exceedance probability plot is constructed by calculating the likelihood of daily inflow
values exceeding specific thresholds based on 40 years of historical data. These daily probabilities
are aggregated into weekly averages for the March-to-August runoff period, which is critical for
reservoir operations. The plot features 30 individual traces, each representing ranked reservoir in-
flow values sorted by exceedance probabilities. This visualization captures the variability and po-
tential range of inflow scenarios across different years. Additionally, the total inflow volume for
the March-to-August period is computed and displayed, enabling a comparative analysis with his-
torical trends. The hold-out years (2016-2020) are annotated on the plot to illustrate their unique
inflow characteristics in relation to the historical record, providing insights into anomalous or rep-
resentative hydrological patterns.

2.7 Total Inflow

The total inflow volume for the four-month runoff period is determined by integrating the
forecasted hydrograph. To enhance temporal resolution, the hydrograph, originally based on
weekly averaged inflow data, is resampled into daily time steps. This process assumes that the
inflow within each week remains constant, allowing the weekly average to be uniformly distributed
across the days of that week. The daily inflow values are then summed and converted from cubic
feet per second (cfs) to acre-feet per day, providing a more granular estimate of total inflow volume.

To evaluate the accuracy of the total inflow forecasts, a comparison is made with a benchmark
Ensemble Streamflow Prediction (ESP) model Two error metrics are used for this purpose:

MARE = Z
N

obs J pred j

obsj - Vbenchmark]
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N 2
RMSRE = lZ( Vobs,j — Vorea,j >
N = Vobs,j - Vbenchmark,j
Relative error values greater than 1.0 indicate performance worse than the ESP model, while

values less than 1.0 indicate better performance. This comparison helps evaluate the trade-off be-
tween model complexity and predictive accuracy.

2.8 Comparison with Statistical Techniques

The forecasts generated by deep learning models are compared against three statistical meth-
ods: VAR (Vector Auto-Regression), TBATS (Trigonometric Seasonal Box-Cox Transformation
with ARMA residuals, trend, and seasonal components), and SARIMA (Seasonal Auto-Regressive
Integrated Moving Average). These methods are trained using monthly averaged inflow data due
to their limitations in handling extended forecasting horizons. To ensure consistency, total inflow
volume predictions from these models are resampled to daily time steps using the methodology
outlined in Section 2.3.4. This alignment allows for a direct comparison with deep learning outputs.
While VAR, TBATS, and SARIMA effectively capture seasonality and periodic trends, their reli-
ance on linear assumptions limits their ability to model non-linear and dynamic hydrological be-
haviors, such as peak inflows during snowmelt or abrupt changes driven by extreme weather events.
By evaluating these statistical methods alongside deep learning models, the study provides a de-
tailed comparison of their strengths and limitations, emphasizing the suitability of machine learning
techniques for addressing the complexities of long-term hydrological forecasts.

e The TBATS Model

The TBATS model employs exponential smoothing, Box-Cox transformations, and ARMA
residuals to capture complex seasonality . Seasonal components are represented with trigonometric
functions, providing flexibility for modeling high-frequency periodic patterns. This model is im-
plemented using Python’s TBATS library and configured to account for quarterly, biannual, and
annual seasonal cycles.

e The SARIMA Model

The SARIMA model predicts time series Z, using a seasonal auto-regressive integrated mov-

ing average process :
@(B)P(BS)(1 - B)4(1 — BS)PZ, = 6(B)O(B%)e,

Here, t denotes discrete time, S represents the seasonal period, and B is the backward shift

operator. Non-seasonal and seasonal auto-regressive components are represented by ¢ and &:
@(B) =1—¢,B—@,B> = — ¢, BP
®B%) =1-d,BS— d,B%5 — ... — d,BFS

The parameters are optimized using Python’s Pmdarima library for an annual seasonal period

(S = 12 months).

e Vector Auto Regression Model

The Vector Auto-Regression (VAR) model predicts a vector of variables y, using its lagged
values :
Ve =A1Ye1 +AYe o+t Apyt—p +u;
Here, A; are parameter matrices for each lag, and u, represents residuals. The optimal lag
order p is determined by minimizing the Akaike Information Criterion (AIC):

2K?p
AIC(p) = In[E(p)| +

e Ensemble Streamflow Prediction (ESP) Model
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The Ensemble Streamflow Prediction (ESP) approach, developed by the National Weather
Service (NWS) , is a Monte Carlo simulation technique for probabilistic streamflow forecasting.
ESP combines physical hydrological models with probabilistic representations of future weather
conditions, leveraging historical meteorological data to generate forecast scenarios. This method
assumes historical weather patterns provide a representative sample of possible future conditions .

In ESP, each historical weather year is treated as an independent future scenario with equal
probability (1/m, where m is the number of historical patterns). Hydrological simulations based
on snowpack, precipitation, and temperature conditions generate individual streamflow traces.
These traces form an ensemble used to fit a probability density function (p.d.f.), describing the
likelihood of specific streamflow magnitudes. For this study, the median streamflow value (50%
exceedance probability) is used as a benchmark for evaluating model forecasts.

3. Results

This section may be divided by subheadings. It should provide a concise and precise descrip-
tion of the experimental results, their interpretation, as well as the experimental conclusions that
can be drawn.

3.1 Optimization of the Model

Cross-Validation results are summarized below, highlighting the identification of optimal hy-
per-parameters and the selection of the best-performing models (Table 2).

Table 2: Optimization of Hyperparameters using 5-Fold Time-Series Cross-Validation on the
2011-2015 Data

ML Model Hyper-parameters # Parameters Cross Val Ranking
ResLSTM-LSTM Nodes: 8 3400 3
ResLSTM-LSTM Nodes: 16 11350 2
ResLSTM-LSTM Nodes: 32 41200 1

LSTM-LSTM Nodes: 8 1650 3

LSTM-LSTM Nodes: 16 4950 1

LSTM-LSTM Nodes: 32 16250 2
ResCNN-LSTM Nodes: 16 6750 1
ResCNN-LSTM Nodes: 16 7950 2
ResCNN-LSTM Nodes: 16 10300 3

CNN-LSTM Nodes: 16 3900 1

CNN-LSTM Nodes: 16 4400

CNN-LSTM Nodes: 16 5500 3

For the standard LSTM-LSTM model, the optimal configuration involved 16 nodes per layer,
as deviations in this parameter reduced accuracy. In contrast, the residual LSTM-LSTM model
showed improved performance as the number of nodes increased from 8 to 16 and 32.

The standard CNN-LSTM and residual CNN-LSTM models exhibited a notable decline in
performance as the kernel size increased from 2 to 4 and 8, while maintaining a fixed number of
16 LSTM nodes. This trend highlights the sensitivity of CNN-based architectures to kernel size,
where smaller kernels are better suited for capturing localized patterns in the input data. Conversely,
the residual LSTM-LSTM model showed improved performance with an increasing number of
nodes, achieving its best results at 32 nodes per layer. The standard LSTM-LSTM model, however,
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demonstrated optimal performance with 16 nodes per layer, indicating a balance between network
complexity and predictive accuracy.

Ultimately, four configurations were identified as optimal: (1) standard LSTM-LSTM with
16 nodes per layer, (2) residual LSTM-LSTM with 32 nodes per layer, (3) standard CNN-LSTM
with a kernel size of 2 and 16 LSTM nodes, and (4) residual CNN-LSTM with a kernel size of 2
and 16 LSTM nodes.

Final model selection was conducted using performance metrics evaluated on the hold-out
data from 2016 to 2020 (Table 3) to ensure an unbiased assessment. Among the four models, the
standard LSTM-LSTM emerged as the most accurate, achieving the lowest errors (NMAE,
NRMSE, and NMedAE) and the highest scores for NSE and ExpVar. This architecture demon-
strated efficiency, with approximately 1,210 trainable parameters per layer and a total of 4,850
parameters across its four layers (Figure 4). The combination of moderate complexity and high
predictive performance highlights its suitability for long-term hydrological forecasting tasks.

Table 3: Average Performance Metrics for Selected Deep Learning Models (2016—2020 Hold-Out

Data
) Model Parameter Density RMSE MAE MedAE N-SE  ExpVar
ResLSTM-LSTM 5797.44 0.33066 0.50490 0.15939 0.70389 0.73062
LSTM-LSTM 1092.96 0.25047 0.45738 0.16929 0.77715 0.77220
ResCNN-LSTM 646.47 0.47817 0.40095 0.67320 0.30789 0.36630
CNN-LSTM 619.74 0.41877 051381 0.25245 0.53163 0.69993

The residual LSTM-LSTM model ranked second, with the highest complexity at 41,050 train-
able parameters. Both CNN-LSTM variants demonstrated lower accuracy, with complexities de-
fined by 3,850 and 6,700 trainable parameters for the standard and residual models, respectively.
A trend of increasing accuracy with higher model complexity was evident.

3.2 Model Evaluation

The selected models were evaluated using hold-out test years from 2016 to 2020. The multi-

step forecasts generated by the selected LSTM-LSTM model are illustrated in Figure 6, which

includes observed inflows (solid line), forecasted inflows (dashed line), boxplots, and shaded ex-
ceedance probabilities.
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Figure 6: Reservoir inflow predictions for the 2016-2020 Held-Out Periods

The boxplots represent the distribution of inflow predictions across 50 independent model
runs for each test year, highlighting the variability and uncertainty in the forecasts. Performance
metrics for each year are summarized in Table 4, providing a comprehensive evaluation of the
model’s accuracy and consistency over the hold-out period.

Furthermore, Figure 7 compares the total forecasted inflow volume with the baseline Ensem-
ble Streamflow Prediction (ESP) model within a 95% confidence interval. This comparison under-
scores the model’s capability to predict overall inflow trends and its reliability in capturing long-
term hydrological patterns, validating the effectiveness of the LSTM-LSTM architecture.
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Table 4: Yearly Performance Metrics of the Selected LSTM-LSTM Model (2016-2020)
LeaveOneOut Year MAE RMSE MedAE N-SE Explained Var

2016 0.265 0.550 0.052 0.770 0.780
2017 0.330 0.440 0.172 0.760 0.762
2018 0.270 0.420 0.150 0.830 0.832
2019 0.460 0.720 0.126 0.510 0.570
2020 0.115 0.160 0.067 0.980 0.982
Average 0.288 0.458 0.113 0.770 0.785
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Figure 7: Comparison of Forecasted vs. Observed Total Inflow VVolumes for 20162020

In 2016, the model accurately captured the hydrograph’s rising and falling limbs but underestimated
peak inflow, leading to a total inflow under-prediction. The 2017 forecasts improved in predicting
peak inflow during an exceptional water year, though discrepancies persisted in the hydrograph
limbs. Metrics for both years reflected similar performance, with NSE and ExpVar values between
0.74 and 0.78 (Table 4).

For 2018, the lowest inflow year among the test set, the model slightly under-predicted the rising
limb and over-predicted the falling limb, with errors relatively minor compared to larger inflow
years. Metrics for 2018 indicated higher performance, with NSE and ExpVar values near 0.73. In
2019, an extreme inflow year, the model under-predicted both the peak inflow and falling limb,
resulting in the lowest metrics among all years.

In 2020, the model achieved its best performance, accurately predicting both limbs and slightly
underestimating the peak inflow. Metrics for 2020 included the highest NSE and ExpVar. values
(0.978 and 0.979, respectively) and the lowest errors (MAE: 0.112, RMSE: 0.150, MedAE: 0.066)
(Table 4). Across all years, the LSTM-LSTM model demonstrated robustness, with occasional er-
rors in peak inflow predictions.

Figure 8 highlights the trade-off between accuracy and complexity of the model, showing the rela-
tive error in total inflow volume against the number of trainable parameters.
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Figure 8: Balance Between prediction Accuracy and model Complexity for Long-Term Wa-
ter Supply Predictions

Among the statistical models, SARIMA, the simplest, had the highest relative errors, while TBATS
and VAR offered moderate improvements but remained less accurate than the ESP benchmark. The
selected LSTM-LSTM model outperformed the ESP benchmark, achieving a 48% improvement in
accuracy as measured by MARE and RMSRE metrics.

4. Discussion

Deep learning algorithms have shown notable advancements in streamflow forecasting, as evi-
denced by previous studies using direct-step approaches and multi-step frameworks. However, the
challenge of long-term forecasting has persisted, particularly in snow-dominated catchments where
hydrological variability is significant. In this study, the LSTM-LSTM model demonstrated superior
accuracy over statistical methods and the ESP baseline, highlighting its capability for long-term
inflow predictions. Nonetheless, the model’s primary limitation lies in its tendency to under-predict
peak inflows during extreme hydrological events, as illustrated in the 2019 forecast (Figure 6).

The performance of the model was strongest during medium inflow periods, with the 2020 forecast
achieving the highest accuracy. This aligns with a 50% exceedance probability (Figure 5), suggest-
ing that the model is particularly adept at capturing average hydrological patterns. Conversely, ex-
treme conditions, such as the 2019 inflow with an exceedance probability below 10%, presented
significant challenges, leading to under-predictions of peak inflows. These results are consistent
with findings from, which highlight the inherent difficulties in forecasting extreme events due to
their rarity and the complex interplay of influencing factors.

The proposed deep learning approach offers a substantial improvement in long-term water supply
forecasting. The LSTM-LSTM architecture achieved a 50% reduction in relative error compared
to traditional statistical models, validating its ability to capture inter-annual SWE variability and
complex temporal dependencies. This aligns with the findings of, where data-driven models were
shown to outperform process-based methods for long-term predictions in ungauged basins. By lev-
eraging historical data patterns, the LSTM-LSTM model has proven to be an effective tool for
understanding hydrological variability across a broad spectrum of inflows.

While the model’s complexity presents challenges, such as increased computational costs and the
risk of over-fitting, its robust performance across diverse hydrological conditions during the 2016—
2020 hold-out period suggests a well-balanced trade-off between complexity and accuracy. The
observed improvements in accuracy during medium and low inflows underscore the potential of
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deep learning models to enhance water resource management and planning. However, the limita-
tions in predicting extreme peak inflows highlight the need for further research.

Future efforts could focus on hybridizing deep learning models with physical process-based con-
straints to better account for extreme events. For instance, integrating SWE dynamics directly into
the model or incorporating probabilistic ensemble methods could enhance the model’s ability to
capture rare but critical inflow scenarios. Additionally, expanding the training dataset through syn-
thetic sequences representing extreme hydrological conditions may improve the model’s generali-
zability. Lastly, exploring advanced architectures, such as transformers or graph neural networks,
may offer further gains in accuracy while maintaining scalability.

5. Conclusion

This study presents a comprehensive evaluation of deep learning approaches for multi-step reser-
voir inflow forecasting, specifically focusing on Encoder-Decoder architectures. The findings high-
light the significant potential of deep learning methods to outperform traditional statistical models
and rival established physical models such as the Ensemble Streamflow Prediction (ESP) frame-
work. Among the tested architectures, the LSTM-LSTM model exhibited the highest accuracy,
achieving a 50% improvement in performance relative to the ESP baseline, albeit with increased
model complexity. The primary strength of the proposed method lies in its capability to effectively
capture long-term temporal dependencies and the non-linear dynamics inherent to snow-dominated
catchments. The model excelled in forecasting during periods of medium to low inflows, with the
highest performance observed during the 2020 and 2018 forecast periods. However, challenges
remain in accurately predicting extreme hydrological events, as the model tended to under-predict
peak inflows. This limitation underscores the need for further refinement of the architecture and
training techniques to better account for such variability. The study also demonstrates that increas-
ing model complexity correlates positively with accuracy, up to a certain threshold, emphasizing
the importance of balancing complexity and performance in deep learning model design. While
residual connections and CNN-LSTM variants showed promise, their performance was hindered
by suboptimal architecture configurations, indicating opportunities for improvement through en-
hanced hyperparameter optimization and broader parameter searches. In summary, this research
advances the field of hydrological forecasting by showcasing the potential of data-driven models
to complement or surpass traditional methodologies. The proposed framework provides a valuable
tool for water resource managers, enabling more accurate long-term planning and adaptive man-
agement in the face of growing climatic uncertainties. Future research could expand upon these
findings by exploring hybrid models that integrate physical constraints with data-driven approaches
to further enhance predictive.
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