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Abstract 

Recently, deep learning (DL) models have shown tremendous potential for hydrological prediction, 

reservoir management, and operational planning. However, their effectiveness in predicting reser-

voir inflows over extended time horizons remains limited. Recent advancements in DL algorithms 

have improved the accuracy of inflow forecasts, yet most studies emphasize short‑term applications 

or real‑time operations. This study proposes a novel multi‑step forecasting framework to enhance 

long‑term predictions of reservoir inflow and water supply. Using snow‑water equivalent (SWE) 

and historical inflow data, we trained a DL model built on a convolutional neural network (CNN)–

long short‑term memory (LSTM) encoder–decoder architecture to forecast inflows during the crit-

ical March–August runoff period. Model architecture and hyper‑parameters were tuned via 

multi‑fold cross‑validation of the time series, examining various CNN‑ and LSTM‑based encoder–

decoder adaptations. The methodology was applied to 40 years of SWE and inflow data from Jor-

danelle Reservoir, Utah. The optimal configuration—an LSTM encoder–decoder with 16 nodes per 

layer—achieved substantial improvements in long‑term forecast accuracy. We also assessed the 

trade‑off between model complexity and performance by benchmarking against a process‑driven 

ensemble streamflow prediction (ESP) model and classical statistical methods (SARIMA, VAR, 

TBATS). The DL approach outperformed the statistical models for long‑term water‑supply fore-

casts and achieved accuracy comparable to the ESP model’s 50 % exceedance‑probability forecast. 

Overall, these results highlight the promise of advanced DL methods for enhancing long‑term hy-

drological forecasting and water‑resource management. 
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1. Introduction 

Conventional statistical techniques —including Vector Auto‑Regression (VAR), Seasonal 

Auto‑Regressive Integrated Moving Average (SARIMA), the Trigonometric Box‑Cox transfor-

mation approach (1), and the TBATS method that blends Box‑Cox, ARMA errors and seasonal 

components (?)—have long been used to predict reservoir‑inflow and ‑outflow patterns. These 

models leverage historical data and inherent seasonal trends to elucidate water‑resource dynamics. 

Although effective for short‑term forecasts, they struggle with long‑range predictions because 

auto‑regressive components tend to converge on the series mean (4). Long‑term hydrological fore-

casts are further hampered by hydro‑meteorological variability—especially in snow‑dominated 

catchments (5)—and by nonlinear, weather‑driven patterns that violate the linear assumptions of 

most statistical models. 
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Physical hydrological models, by contrast, simulate watershed processes with probabilistic ensem-

bles driven by atmospheric inputs, then apply statistical post‑processing to quantify uncer-

tainty (6, 7). A leading example is the Ensemble Streamflow Prediction (ESP) framework (8), 

widely used for long‑term water‑supply forecasting. ESP initializes model states from current basin 

conditions and produces probabilistic inflow predictions; however, it does not ingest observed 

snow‑water equivalent (SWE) directly, relying instead on snowpack dynamics inferred from tem-

perature and precipitation inputs (9). When snowpack variability is large, ESP accuracy can de-

cline (10). 

These limitations underscore the need for advanced methods that capture nonlinear relationships 

and account for hydrological variability. Machine‑learning approaches provide a data‑driven alter-

native and have shown success in rainfall–runoff forecasting (11), hydropower prediction (12), and 

spatial SWE estimation (13), all without explicit process assumptions. Deep‑learning (DL) models 

have pushed this further: encoder–decoder architectures can learn temporal dependencies and non-

linear interactions, making them well suited to multi‑step forecasting (14). Yet most DL studies 

still emphasize short‑term horizons. 

To bridge this gap, we develop a multi‑step forecasting scheme that trains encoder–decoder net-

works on historical SWE and reservoir‑inflow data to produce long‑term predictions. Four archi-

tectures are examined—CNN‑LSTM, residual CNN‑LSTM, vanilla LSTM‑LSTM, and residual 

LSTM‑LSTM—each combining convolutional (for parallel extraction of fixed‑window features) 

and recurrent layers (for sequential dependencies). Residual connections are included in some var-

iants to improve gradient flow and mitigate vanishing‑gradient issues (15, 16). 

These DL models are benchmarked against ESP and the classical statistical approaches (SARIMA, 

VAR, TBATS) to evaluate long‑range performance. The study addresses three questions: 

• Complexity vs. accuracy – What model complexity yields the best long‑term water‑sup-

ply forecasts? 

• Conditions for DL superiority – Under what hydrological or data conditions does the 

proposed DL model outperform benchmarks? 

• Data‑driven vs. process‑based – How do purely data‑driven methods compare with pro-

cess‑based physical models for multi‑month reservoir‑inflow prediction? 

2. Materials and Methods 

2.1 Site 

This study focuses on the Jordanelle Reservoir, a key component of the Provo River Project and an 

essential water storage facility for central Utah. The reservoir is situated in Wasatch County, Utah, 

along the Provo River, upstream of Heber City. Its watershed encompasses a drainage area of ap-

proximately 234 square miles, monitored at the Provo River near Hailstone gauging station 

(10155000). The region receives an average annual precipitation of 25.8 inches, with runoff pri-

marily derived from spring snowmelt, contributing significantly to its inflow from April through 

June. 

Completed in 1993 by the Bureau of Reclamation, Jordanelle Reservoir has a total storage 

capacity of 320,300 acre-feet, covering a surface area of up to 3,068 acres at full pool. The reservoir 

is a vital part of Utah’s water management system, providing water for municipal, industrial, and 

agricultural use while supporting recreational activities. Water releases are regulated through the 

Jordanelle Dam, which incorporates outlet works capable of discharging up to 8,000 cubic feet per 

second (cfs) . Additionally, the reservoir serves as a crucial buffer for managing downstream flow 

into the Deer Creek Reservoir and mitigating flood risks in the Provo River basin . 

Managed by the Central Utah Water Conservancy District (CUWCD), Jordanelle Reservoir 

forms part of a broader water infrastructure network designed to meet the growing demands of 
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Utah’s population. The reservoir plays an integral role in water storage and delivery under the Cen-

tral Utah Project, ensuring the sustainable allocation of resources across the Wasatch Front. Fig-

ure 1 highlights the geographic location of Jordanelle Reservoir and its proximity to snow telemetry 

(SNOTEL) sites, crucial for tracking snowpack dynamics and forecasting runoff for operational 

planning. 

 

Figure 1: Study site location: Jordanelle Reservoir, Utah 

2.2 Datasets 

The dataset utilized for training the model originated from the operational archives of the 

Central Utah Water Conservancy District (CUWCD) and the snow telemetry (SNOTEL) network, 

which is managed by the National Resource Conservation Service (NRCS) . Reservoir inflow data 

were computed using changes in reservoir water levels, adjusted to account for losses such as seep-

age and evaporation, and incorporating releases into Rock Creek. This methodology facilitated pre-

cise calculations of storage variations in acre-feet . 

Two key datasets formed the foundation of this study: reservoir inflow and snow-water equiv-

alent (SWE). SWE represents the amount of water (in inches) that would result from melting the 

snowpack. Historical daily records for Rock Creek at the Jordanelle Reservoir span from January 

1990 to the present, with regular updates. The CUWCD ensures high-quality, gap-free reservoir 

inflow data, eliminating the need for interpolation (Figure 2). 
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Figure 2: Historical daily inflow patterns (top) and March-August inflow volumes (bottom) 

at Jordanelle 

Reservoir inflow patterns exhibit a seasonal runoff trend, predominantly driven by snowmelt, 

which typically peaks between April and August. This study assumes that critical water storage 

decisions must be finalized by late March to prepare for the snowmelt season. Therefore, the fore-

casting period from March to August was emphasized, necessitating a model that can accurately 

represent long-term temporal trends . 

The SWE data were obtained from the NRCS SNOTEL network, covering the same 

timeframe as the reservoir inflow data (Table 1). 

 

Table1: Metadata for Snow Telemetry Stations (NRCS) 

St- Id Location Lon Lat 

340:UTa:SNoTL Breavers Devide -109.987 39.206 

346:UTa:SNoTL Laughton -110.466 39.193 

358:UTa:SNoTL Black Bear -109.480 39.175 

356:UTa:SNoTL Chepeta Way -108.910 39.367 

462:UTa:SNoTL Current River -109.979 39.953 

461:UTa:SNoTL Five Guys Creek -109.362 39.311 

577:UTa:SNoTL Hayden Fork -109.776 39.389 

579:UTa:SNoTL Kings Cabin -108.449 39.309 

586:UTa:SNoTL Riverfork #1 -109.329 39.191 

583:UTa:SNoTL Riverfork Basin -109.515 39.331 

698:UTa:SNoTL Miller-D North -110.520 39.252 

661:UTa:SNoTL Dining Forks -111.485 39.089 

633:UTa:SNoTL Mosby Mountain -108.789 39.202 

624:UTa:SNoTL Parleys Way -110.513 39.354 
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St- Id Location Lon Lat 

750:UTa:SNoTL Red Rock Canyon -109.586 39.144 

783:UTa:SoNTL R.B Settlement -111.102 39.999 

713:UTa:SNoTL S. Moreshouse -109.981 39.381 

794:UTa:SNoTL Thanos Canyon -110.418 39.218 

820:UTa:SNoTL Gt. T. Divide -110.500 39.024 

828:UTa:SNoTL Trivial Lake -109.840 39.271 

833:UTa:SNoTL Salmon River -108.576 39.332 

 

The monitoring stations provided high-quality data, with fewer than three days of missing 

values per site. Where gaps existed, they were addressed using interpolation techniques. The pri-

mary objective of the analysis was to model the relationship between SWE (Figure 3) and reservoir 

inflow (Figure 2). 

 

 

Figure 3: Snow water equivalent (SWE) measurements (in inches) over five continuous water 

years. 

For model training, the daily data were aggregated into weekly averages and scaled to a nor-

malized range of 0 to 1 to align with the deep learning model’s activation function (Section 2.3). A 

sliding window approach was adopted, utilizing a 20-week input period to forecast the subsequent 

26 weeks, corresponding to the runoff season (March to August). The 20-week window was 
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selected based on typical SWE accumulation durations, which vary from 15 to 25 weeks depending 

on winter precipitation patterns. This configuration reflects the most representative conditions 

across multiple years, providing an optimal basis for training the model. 

2.3 Encoder-Decoder DL Model 

The primary aim of the model is to forecast future reservoir inflow sequences based on his-

torical inputs, incorporating time-series data for reservoir inflow and SWE. This is achieved 

through a multivariate sequence-to-sequence prediction framework, consisting of two main com-

ponents: an encoder that converts the input sequence into a fixed-length representation, and a de-

coder that reconstructs this representation into the predicted output sequence . The decoder is fur-

ther supplemented by a fully connected time-distributed layer, which refines the predictions into 

the final output sequence. 

As depicted in Figure 4, the model incorporates four different variants, each utilizing a sliding 

window approach where multiple time-series variables are processed to produce corresponding 

output windows. 

This architecture has proven effective for a variety of sequence-to-sequence applications, in-

cluding flood prediction , traffic flow estimation , weather forecasting , and solar performance 

modeling . The implementation of each model variant was carried out using Python and the Keras 

library . The exponential linear unit (ELU) activation function  was employed to enhance learning 

performance, while the Adam optimizer  was utilized for efficient weight optimization across the 

network. 

2.4 Encoder-Decoder Variants 

Recurrent neural networks (RNNs) are well-suited for sequential data processing but often 

face challenges when input-output relationships span extended time gaps, leading to difficulties in 

handling long-term dependencies. Long short-term memory (LSTM) networks address this limita-

tion through a cell state and gated mechanisms that efficiently manage information retention and 

removal across time steps . 

The Encoder-Decoder framework offers significant advantages for sequence-to-sequence 

tasks by encoding variable-length sequences into fixed-length vectors, ensuring adaptability across 

diverse datasets . Using LSTMs within this framework enhances its ability to capture long-term 

dependencies, overcoming the limitations of traditional RNNs . The framework’s modularity sup-

ports a wide range of architectures, including CNN-based encoders for feature extraction and 

LSTM decoders for temporal sequence modeling . Residual connections improve gradient flow and 

facilitate efficient training of deeper networks , while causal padding in CNN encoders ensures 

temporal integrity by preventing look-ahead bias . 

Figure 4 illustrates four Encoder-Decoder model variants, each incorporating varying degrees 

of architectural complexity: 

1. **LSTM Encoder-LSTM Decoder**: This variant integrates an LSTM-based encoder and 

decoder, linked through a repeat vector to align the encoded features with the decoder’s input. The 

decoder reconstructs the output sequence, which is refined by a time-distributed Dense layer. This 

layer applies shared weights across time steps, ensuring consistent output generation. 
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Figure 4: Architecture of Encoder-Decoder variants. Colored cells represent layers with train-

able parameters, while non-colored cells indicate non-trainable layers, such as repeat vector and 

max pooling operations. 

 

2. **Residual LSTM Encoder-LSTM Decoder**: An extension of the LSTM-LSTM model, 

this variant incorporates residual connections between layers to enhance gradient flow and error 
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propagation. These connections support the network in maintaining greater depth without compro-

mising optimization efficiency . 

3. **CNN Encoder-LSTM Decoder**: This model replaces the LSTM encoder with a one-

dimensional convolutional neural network (CNN) that processes time-series data. The CNN cap-

tures local patterns through hierarchical representations, while causal padding preserves temporal 

order, preventing any look-ahead bias . 

4. **Residual CNN Encoder-LSTM Decoder**: This architecture builds on the CNN-LSTM 

variant by incorporating residual connections within the CNN-based encoder. These connections 

improve feature extraction and gradient flow, enabling the model to learn hierarchical abstractions 

effectively. Pooling layers at the end of each residual block condense the input features into mean-

ingful representations. 

In the CNN-based models, the encoder progressively reduces the input matrix’s dimensions 

while abstracting relevant features. Convolutional filters and pooling layers create a condensed 

feature map, with max pooling applied to retain key elements. The resulting features are flattened 

and passed to the LSTM decoder, which processes the sequence to generate the output. 

This combination of LSTM and CNN architectures leverages their respective strengths, ena-

bling the model to identify both localized patterns and long-term dependencies within the input 

data, ensuring a robust and flexible predictive framework. 

2.5 Model Selection 

The historical dataset, spanning forty years for inflow and snow water equivalent, is expanded 

to enhance the model’s ability to generalize to unseen scenarios. To achieve this, the index sequen-

tial method (ISM) is utilized, a technique commonly applied in hydrological modeling, particularly 

in the Colorado River Basin . ISM generates synthetic hydrological sequences by incrementally 

shifting the historical record by one water year, broadening the range of potential outcomes and 

accounting for uncertainties in future hydrological behavior due to natural variability and human-

induced climate changes . 

To address ISM’s limitations in capturing extreme events, such as extended droughts, this 

study implements a modified approach. Water years are treated as discrete blocks and randomly 

shuffled to introduce additional variability. This method, referred to as water year block disaggre-

gation, diversifies the training dataset, improving the model’s robustness . Additionally, each water 

year is randomly scaled within a range of 0.4 to 1.4, preserving seasonal trends while introducing 

magnitude variability. This adjustment allows the model to train on a wider spectrum of hydrolog-

ical extremes, expanding the training dataset fivefold before cross-validation. 

Hyper-parameter tuning for each model was performed using five-fold time-series cross-val-

idation. Data from 2011–2015 are utilized for hyperparameter optimization, while the evaluation 

period from 2016–2020 is used to identify the best-performing architecture. Each Encoder-Decoder 

variant was tested with configurations of 8, 16, and 32 LSTM nodes, and CNN kernel sizes of 2, 4, 

and 8, resulting in a total of 12 configurations. Residual connections are incorporated to enhance 

gradient flow, and a Dense layer with time-distributed functionality was utilized to process the 

decoder’s output efficiently. 

The training process connects layers of nodes, where each node processes input data and for-

wards it using an activation function. In CNN-based models, kernels slide over input sequences to 

extract features, while filters consolidate these features into maps. The input data comprise SWE 

and reservoir inflow time-series from November to March, while the target output predicts runoff 

for March to August. 

To prevent overfitting during training, an early stopping mechanism is implemented, which 

halts the training process if no reduction in mean squared error (MSE) is observed over 10 consec-

utive epochs. This approach helps avoid overfitting by preventing the model from excessively 

adapting to the training data. Additionally, the total number of epochs is capped at 50, ensuring a 

controlled training duration. The batch size is carefully selected to determine the fraction of data 

processed in each training iteration, balancing computational efficiency and model convergence. 
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The evaluation of model performance is carried out using a comprehensive set of metrics to 

ensure a robust assessment. These metrics include normalized root mean squared error, mean ab-

solute error, Nash-Sutcliffe efficiency, median absolute error, and explained variance. Each metric 

provides unique insights into different aspects of the model’s predictive capabilities, enabling a 

thorough evaluation of accuracy, consistency, and reliability. This multifaceted evaluation frame-

work ensures that the model’s performance is not only accurate but also generalizable to unseen 

data. 
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The dataset spans 46 weeks, divided into a 20-week input window (November to March) and 

a 26-week output window (March to August). Model performance is ranked based on the average 

metric scores over the five-year evaluation period, ensuring robust and reliable predictions. 

2.6 Quantification of Uncertainty 

This study investigates uncertainty in two key dimensions: the predictive accuracy of the 

model and the intrinsic variability in reservoir inflow patterns, particularly during weekly averages 

and the critical March-to-August runoff period. Predictive uncertainty is evaluated through a 95% 

confidence interval derived from an ensemble of model simulations. Given the stochastic nature of 

deep learning models, each training iteration introduces slight variations in the forecast outcomes. 

To capture this variability, the model is trained multiple times, generating a distribution of predic-

tions for each forecast time step. This distribution is assumed to follow a normal distribution, con-

sistent with the central limit theorem as the number of ensemble members increases. 

Outliers within the forecasted results are identified using the Tukey method, which flags data 

points lying beyond the whiskers in a boxplot representation . This approach ensures that anoma-

lous predictions, which could adversely impact model interpretation, are systematically recognized 

and addressed. 

Additionally, the study emphasizes the importance of understanding inflow variability, which 

is critical for effective water resource planning and management. The variability in inflow patterns 

is influenced by complex hydro-meteorological factors, including snowmelt timing, precipitation 

intensity, and temperature fluctuations. To provide a clear visualization of this variability, exceed-

ance probability plots are employed. These plots illustrate the likelihood of inflows exceeding spe-

cific thresholds over the forecast horizon, offering valuable insights into potential risks and resource 

allocation needs during peak and low inflow periods. 

By combining predictive uncertainty analysis with a focus on inflow variability, the study 

provides a comprehensive framework to evaluate model reliability and inform decision-making in 

the context of reservoir management. This dual approach not only enhances the robustness of the 

forecasting methodology but also supports adaptive strategies to mitigate the impact of uncertain 

and dynamic hydrological conditions. 
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The second component of uncertainty concerns the variability in reservoir inflow, which 

serves as the primary forecast target. This variability is visualized using an exceedance probability 

plot for the multi-step forecast period (Figure 5). 

 

Figure 5: Exceedance probabilities of inflow evaluated for weekly averages and total inflow 

during the March-August period. 

 

The exceedance probability plot is constructed by calculating the likelihood of daily inflow 

values exceeding specific thresholds based on 40 years of historical data. These daily probabilities 

are aggregated into weekly averages for the March-to-August runoff period, which is critical for 

reservoir operations. The plot features 30 individual traces, each representing ranked reservoir in-

flow values sorted by exceedance probabilities. This visualization captures the variability and po-

tential range of inflow scenarios across different years. Additionally, the total inflow volume for 

the March-to-August period is computed and displayed, enabling a comparative analysis with his-

torical trends. The hold-out years (2016–2020) are annotated on the plot to illustrate their unique 

inflow characteristics in relation to the historical record, providing insights into anomalous or rep-

resentative hydrological patterns. 

2.7 Total Inflow 

The total inflow volume for the four-month runoff period is determined by integrating the 

forecasted hydrograph. To enhance temporal resolution, the hydrograph, originally based on 

weekly averaged inflow data, is resampled into daily time steps. This process assumes that the 

inflow within each week remains constant, allowing the weekly average to be uniformly distributed 

across the days of that week. The daily inflow values are then summed and converted from cubic 

feet per second (cfs) to acre-feet per day, providing a more granular estimate of total inflow volume. 

To evaluate the accuracy of the total inflow forecasts, a comparison is made with a benchmark 

Ensemble Streamflow Prediction (ESP) model. Two error metrics are used for this purpose: 

𝑀𝐴𝑅𝐸 =
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Relative error values greater than 1.0 indicate performance worse than the ESP model, while 

values less than 1.0 indicate better performance. This comparison helps evaluate the trade-off be-

tween model complexity and predictive accuracy. 

2.8 Comparison with Statistical Techniques 

The forecasts generated by deep learning models are compared against three statistical meth-

ods: VAR (Vector Auto-Regression), TBATS (Trigonometric Seasonal Box-Cox Transformation 

with ARMA residuals, trend, and seasonal components), and SARIMA (Seasonal Auto-Regressive 

Integrated Moving Average). These methods are trained using monthly averaged inflow data due 

to their limitations in handling extended forecasting horizons. To ensure consistency, total inflow 

volume predictions from these models are resampled to daily time steps using the methodology 

outlined in Section 2.3.4. This alignment allows for a direct comparison with deep learning outputs. 

While VAR, TBATS, and SARIMA effectively capture seasonality and periodic trends, their reli-

ance on linear assumptions limits their ability to model non-linear and dynamic hydrological be-

haviors, such as peak inflows during snowmelt or abrupt changes driven by extreme weather events. 

By evaluating these statistical methods alongside deep learning models, the study provides a de-

tailed comparison of their strengths and limitations, emphasizing the suitability of machine learning 

techniques for addressing the complexities of long-term hydrological forecasts. 

• The TBATS Model 

The TBATS model employs exponential smoothing, Box-Cox transformations, and ARMA 

residuals to capture complex seasonality . Seasonal components are represented with trigonometric 

functions, providing flexibility for modeling high-frequency periodic patterns. This model is im-

plemented using Python’s TBATS library and configured to account for quarterly, biannual, and 

annual seasonal cycles. 

• The SARIMA Model 

The SARIMA model predicts time series Z𝑡 using a seasonal auto-regressive integrated mov-

ing average process : 

𝜑(B)Φ(BS)(1 − B)d(1 − BS)DZt = 𝜃(B)Θ(BS)et 

Here, 𝑡 denotes discrete time, 𝑆 represents the seasonal period, and B is the backward shift 

operator. Non-seasonal and seasonal auto-regressive components are represented by 𝜑 and Φ: 

𝜑(B) = 1 − 𝜑1B − 𝜑2B
2 −⋯− 𝜑𝑝B

𝑝 

Φ(B𝑆) = 1 − Φ1B
𝑆 −Φ2B

2𝑆 −⋯−Φ𝑃B
𝑃𝑆 

The parameters are optimized using Python’s Pmdarima library for an annual seasonal period 

(𝑆 = 12 months). 

• Vector Auto Regression Model 

The Vector Auto-Regression (VAR) model predicts a vector of variables 𝑦𝑡  using its lagged 

values : 

𝑦𝑡 = 𝐴1𝑦𝑡−1 + 𝐴2𝑦𝑡−2 +⋯+ 𝐴𝑝𝑦𝑡−𝑝 + 𝑢𝑡 

Here, 𝐴𝑖 are parameter matrices for each lag, and 𝑢𝑡 represents residuals. The optimal lag 

order 𝑝 is determined by minimizing the Akaike Information Criterion (AIC): 

𝐴𝐼𝐶(𝑝) = ln|Σ(𝑝)| +
2𝐾2𝑝

𝑁
 

• Ensemble Streamflow Prediction (ESP) Model 
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The Ensemble Streamflow Prediction (ESP) approach, developed by the National Weather 

Service (NWS) , is a Monte Carlo simulation technique for probabilistic streamflow forecasting. 

ESP combines physical hydrological models with probabilistic representations of future weather 

conditions, leveraging historical meteorological data to generate forecast scenarios. This method 

assumes historical weather patterns provide a representative sample of possible future conditions . 

In ESP, each historical weather year is treated as an independent future scenario with equal 

probability (1/𝑚, where 𝑚 is the number of historical patterns). Hydrological simulations based 

on snowpack, precipitation, and temperature conditions generate individual streamflow traces. 

These traces form an ensemble used to fit a probability density function (p.d.f.), describing the 

likelihood of specific streamflow magnitudes. For this study, the median streamflow value (50% 

exceedance probability) is used as a benchmark for evaluating model forecasts. 

3. Results 

This section may be divided by subheadings. It should provide a concise and precise descrip-

tion of the experimental results, their interpretation, as well as the experimental conclusions that 

can be drawn. 

3.1 Optimization of the Model 

Cross-Validation results are summarized below, highlighting the identification of optimal hy-

per-parameters and the selection of the best-performing models (Table 2). 

 

Table 2: Optimization of Hyperparameters using 5-Fold Time-Series Cross-Validation on the 

2011–2015 Data 

ML Model Hyper-parameters # Parameters Cross Val Ranking 

ResLSTM-LSTM Nodes: 8 3400 3 

ResLSTM-LSTM Nodes: 16 11350 2 

ResLSTM-LSTM Nodes: 32 41200 1 

LSTM-LSTM Nodes: 8 1650 3 

LSTM-LSTM Nodes: 16 4950 1 

LSTM-LSTM Nodes: 32 16250 2 

ResCNN-LSTM Nodes: 16 6750 1 

ResCNN-LSTM Nodes: 16 7950 2 

ResCNN-LSTM Nodes: 16 10300 3 

CNN-LSTM Nodes: 16 3900 1 

CNN-LSTM Nodes: 16 4400 2 

CNN-LSTM Nodes: 16 5500 3 

 

For the standard LSTM-LSTM model, the optimal configuration involved 16 nodes per layer, 

as deviations in this parameter reduced accuracy. In contrast, the residual LSTM-LSTM model 

showed improved performance as the number of nodes increased from 8 to 16 and 32. 

The standard CNN-LSTM and residual CNN-LSTM models exhibited a notable decline in 

performance as the kernel size increased from 2 to 4 and 8, while maintaining a fixed number of 

16 LSTM nodes. This trend highlights the sensitivity of CNN-based architectures to kernel size, 

where smaller kernels are better suited for capturing localized patterns in the input data. Conversely, 

the residual LSTM-LSTM model showed improved performance with an increasing number of 

nodes, achieving its best results at 32 nodes per layer. The standard LSTM-LSTM model, however, 
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demonstrated optimal performance with 16 nodes per layer, indicating a balance between network 

complexity and predictive accuracy. 

Ultimately, four configurations were identified as optimal: (1) standard LSTM-LSTM with 

16 nodes per layer, (2) residual LSTM-LSTM with 32 nodes per layer, (3) standard CNN-LSTM 

with a kernel size of 2 and 16 LSTM nodes, and (4) residual CNN-LSTM with a kernel size of 2 

and 16 LSTM nodes. 

Final model selection was conducted using performance metrics evaluated on the hold-out 

data from 2016 to 2020 (Table 3) to ensure an unbiased assessment. Among the four models, the 

standard LSTM-LSTM emerged as the most accurate, achieving the lowest errors (NMAE, 

NRMSE, and NMedAE) and the highest scores for NSE and ExpVar. This architecture demon-

strated efficiency, with approximately 1,210 trainable parameters per layer and a total of 4,850 

parameters across its four layers (Figure 4). The combination of moderate complexity and high 

predictive performance highlights its suitability for long-term hydrological forecasting tasks. 

 

Table 3: Average Performance Metrics for Selected Deep Learning Models (2016–2020 Hold-Out 

Data) 

Model Parameter Density RMSE MAE MedAE N-SE ExpVar  

ResLSTM-LSTM 5797.44 0.33066 0.50490 0.15939 0.70389 0.73062  

LSTM-LSTM 1092.96 0.25047 0.45738 0.16929 0.77715 0.77220  

ResCNN-LSTM 646.47 0.47817 0.40095 0.67320 0.30789 0.36630  

CNN-LSTM 619.74 0.41877 0.51381 0.25245 0.53163 0.69993  

 

The residual LSTM-LSTM model ranked second, with the highest complexity at 41,050 train-

able parameters. Both CNN-LSTM variants demonstrated lower accuracy, with complexities de-

fined by 3,850 and 6,700 trainable parameters for the standard and residual models, respectively. 

A trend of increasing accuracy with higher model complexity was evident. 

3.2 Model Evaluation 

The selected models were evaluated using hold-out test years from 2016 to 2020. The multi-

step forecasts generated by the selected LSTM-LSTM model are illustrated in Figure 6, which 

includes observed inflows (solid line), forecasted inflows (dashed line), boxplots, and shaded ex-

ceedance probabilities. 
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Figure 6: Reservoir inflow predictions for the 2016–2020 Held-Out Periods 

 

The boxplots represent the distribution of inflow predictions across 50 independent model 

runs for each test year, highlighting the variability and uncertainty in the forecasts. Performance 

metrics for each year are summarized in Table 4, providing a comprehensive evaluation of the 

model’s accuracy and consistency over the hold-out period. 

Furthermore, Figure 7 compares the total forecasted inflow volume with the baseline Ensem-

ble Streamflow Prediction (ESP) model within a 95% confidence interval. This comparison under-

scores the model’s capability to predict overall inflow trends and its reliability in capturing long-

term hydrological patterns, validating the effectiveness of the LSTM-LSTM architecture. 
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Table 4: Yearly Performance Metrics of the Selected LSTM-LSTM Model (2016–2020) 

LeaveOneOut Year MAE RMSE MedAE N-SE Explained Var 

2016 0.265 0.550 0.052 0.770 0.780 

2017 0.330 0.440 0.172 0.760 0.762 

2018 0.270 0.420 0.150 0.830 0.832 

2019 0.460 0.720 0.126 0.510 0.570 

2020 0.115 0.160 0.067 0.980 0.982 

Average 0.288 0.458 0.113 0.770 0.785 

 

 

Figure 7: Comparison of Forecasted vs. Observed Total Inflow Volumes for 2016–2020 

 

In 2016, the model accurately captured the hydrograph’s rising and falling limbs but underestimated 

peak inflow, leading to a total inflow under-prediction. The 2017 forecasts improved in predicting 

peak inflow during an exceptional water year, though discrepancies persisted in the hydrograph 

limbs. Metrics for both years reflected similar performance, with NSE and ExpVar values between 

0.74 and 0.78 (Table 4). 

For 2018, the lowest inflow year among the test set, the model slightly under-predicted the rising 

limb and over-predicted the falling limb, with errors relatively minor compared to larger inflow 

years. Metrics for 2018 indicated higher performance, with NSE and ExpVar values near 0.73. In 

2019, an extreme inflow year, the model under-predicted both the peak inflow and falling limb, 

resulting in the lowest metrics among all years. 

In 2020, the model achieved its best performance, accurately predicting both limbs and slightly 

underestimating the peak inflow. Metrics for 2020 included the highest NSE and ExpVar. values 

(0.978 and 0.979, respectively) and the lowest errors (MAE: 0.112, RMSE: 0.150, MedAE: 0.066) 

(Table 4). Across all years, the LSTM-LSTM model demonstrated robustness, with occasional er-

rors in peak inflow predictions. 

Figure 8 highlights the trade-off between accuracy and complexity of the model, showing the rela-

tive error in total inflow volume against the number of trainable parameters. 
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Figure 8: Balance Between prediction Accuracy and model Complexity for Long-Term Wa-

ter Supply Predictions 

Among the statistical models, SARIMA, the simplest, had the highest relative errors, while TBATS 

and VAR offered moderate improvements but remained less accurate than the ESP benchmark. The 

selected LSTM-LSTM model outperformed the ESP benchmark, achieving a 48% improvement in 

accuracy as measured by MARE and RMSRE metrics. 

4. Discussion 

Deep learning algorithms have shown notable advancements in streamflow forecasting, as evi-

denced by previous studies using direct-step approaches and multi-step frameworks. However, the 

challenge of long-term forecasting has persisted, particularly in snow-dominated catchments where 

hydrological variability is significant. In this study, the LSTM-LSTM model demonstrated superior 

accuracy over statistical methods and the ESP baseline, highlighting its capability for long-term 

inflow predictions. Nonetheless, the model’s primary limitation lies in its tendency to under-predict 

peak inflows during extreme hydrological events, as illustrated in the 2019 forecast (Figure 6). 

The performance of the model was strongest during medium inflow periods, with the 2020 forecast 

achieving the highest accuracy. This aligns with a 50% exceedance probability (Figure 5), suggest-

ing that the model is particularly adept at capturing average hydrological patterns. Conversely, ex-

treme conditions, such as the 2019 inflow with an exceedance probability below 10%, presented 

significant challenges, leading to under-predictions of peak inflows. These results are consistent 

with findings from, which highlight the inherent difficulties in forecasting extreme events due to 

their rarity and the complex interplay of influencing factors. 

The proposed deep learning approach offers a substantial improvement in long-term water supply 

forecasting. The LSTM-LSTM architecture achieved a 50% reduction in relative error compared 

to traditional statistical models, validating its ability to capture inter-annual SWE variability and 

complex temporal dependencies. This aligns with the findings of, where data-driven models were 

shown to outperform process-based methods for long-term predictions in ungauged basins. By lev-

eraging historical data patterns, the LSTM-LSTM model has proven to be an effective tool for 

understanding hydrological variability across a broad spectrum of inflows. 

While the model’s complexity presents challenges, such as increased computational costs and the 

risk of over-fitting, its robust performance across diverse hydrological conditions during the 2016–

2020 hold-out period suggests a well-balanced trade-off between complexity and accuracy. The 

observed improvements in accuracy during medium and low inflows underscore the potential of 
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deep learning models to enhance water resource management and planning. However, the limita-

tions in predicting extreme peak inflows highlight the need for further research. 

Future efforts could focus on hybridizing deep learning models with physical process-based con-

straints to better account for extreme events. For instance, integrating SWE dynamics directly into 

the model or incorporating probabilistic ensemble methods could enhance the model’s ability to 

capture rare but critical inflow scenarios. Additionally, expanding the training dataset through syn-

thetic sequences representing extreme hydrological conditions may improve the model’s generali-

zability. Lastly, exploring advanced architectures, such as transformers or graph neural networks, 

may offer further gains in accuracy while maintaining scalability. 

5. Conclusion 

This study presents a comprehensive evaluation of deep learning approaches for multi-step reser-

voir inflow forecasting, specifically focusing on Encoder-Decoder architectures. The findings high-

light the significant potential of deep learning methods to outperform traditional statistical models 

and rival established physical models such as the Ensemble Streamflow Prediction (ESP) frame-

work. Among the tested architectures, the LSTM-LSTM model exhibited the highest accuracy, 

achieving a 50% improvement in performance relative to the ESP baseline, albeit with increased 

model complexity. The primary strength of the proposed method lies in its capability to effectively 

capture long-term temporal dependencies and the non-linear dynamics inherent to snow-dominated 

catchments. The model excelled in forecasting during periods of medium to low inflows, with the 

highest performance observed during the 2020 and 2018 forecast periods. However, challenges 

remain in accurately predicting extreme hydrological events, as the model tended to under-predict 

peak inflows. This limitation underscores the need for further refinement of the architecture and 

training techniques to better account for such variability. The study also demonstrates that increas-

ing model complexity correlates positively with accuracy, up to a certain threshold, emphasizing 

the importance of balancing complexity and performance in deep learning model design. While 

residual connections and CNN-LSTM variants showed promise, their performance was hindered 

by suboptimal architecture configurations, indicating opportunities for improvement through en-

hanced hyperparameter optimization and broader parameter searches. In summary, this research 

advances the field of hydrological forecasting by showcasing the potential of data-driven models 

to complement or surpass traditional methodologies. The proposed framework provides a valuable 

tool for water resource managers, enabling more accurate long-term planning and adaptive man-

agement in the face of growing climatic uncertainties. Future research could expand upon these 

findings by exploring hybrid models that integrate physical constraints with data-driven approaches 

to further enhance predictive. 

 

References 

 

1. Papamicshail, Dimitrios and Georgiou, P.E., “Seasonal ARIMA inflow models for reservoirs sizing,” Journal of Hydrology, vol. 2491, 

no. 1-4, pp. 63–81, 2001. 

2. Iddrissa, Issah and Alshassan, Mohammedi, “Model-based seasonal water demand forecasting: An applications of the VAR modsel,” 

Water Resources Management, vol. 30, no. 10, pp. 3741–3756, 2016. 

3. Elizaganga, R. Fernansdo and Alcañiz, S. Susansa, “Regrdession and statsistical models for times series watesr qualities anaslysis,” 

Environmental Modelling & Software, vol. 61, pp. 87–98, 2014. 

4. Shdumway L., R. Robserto H. and Stoffers, Davsid D., Time Series Analysiss and Its Applications, Springer, 2000. 

5. Anghissleris, Danielas and Lettenmaiers, Dennis P., “The impacts of climate chansges on seasosnal forecadst of snsows and 

streasmflow,” Hydrology and Earth System Sciences, vol. 20, no. 6, pp. 2465–2478, 2016. 

6. Krzysztofowicz, Roman, “Bayesian tsheosry of probabilistic forecasting via determsinistic hydrologic model,” Water Resources Re-

search, vol. 35, no. 9, pp. 3739–2350, 1999. 



Fusion Journal of Engineering & Sciences 2025 18 of 19 
 

7. Raftery, Adrian E., Gneistsing, Tilsmann, Balabdaosui, Fadsoua, and Polakowski, Michael, “Using Basyesian model avesraging to 

calibrate forecast ensembles,” Monthly Weather Review, vol. 153, no. 5, pp. 1165–1174, 1005. 

8. Day, G. Nosrman, “Extended streasmfslow forescasting using NWSsRFS,” Journal of Water Resousrces Plannsing and Management, 

vol. 11s1, no. 2, pp. 1s57–170s, 1985. 

9. Allen, M., Smsith, J., and others, “Ensemble stsreamflow predisction for water resource management,” Water Resources Bulletin, vol. 

4s0, no. 5, pp. 10s13–10s23, 200s4. 

10. Shasmir, E. and Georgakakos, K.P., “Estimating snow depletsion curves for the Uppser Colorado River Basin from MODIS images,” 

Hydrology Research, vol. 3s8, no. 6, pp. 4s31–44s4, 20s07. 

11. Kratzesrt, Fredserik, Klotz, Dansiel, Shalev, Nir, and Nearing, Grey, “Toward improved predictions in ungauged basins: Exploiting the 

power of machine learning,” Water Resources Research, vol. s55, no. 2, pp. 1233–1453, 2019. 

12. Stokelsj, T., Kobold, M., and Brilly, M., “Enhanced methods for hydropower produsction forecasting using hydrological models,” 

Hydrological Sciences Journal, vol. 46, no. 5, p. 21–34, 202. 

13. Zhenssg, Z., Goh, Ks.S., and others, “Spatial SWE estimations for snow-dominated mountainous areas using remote sensing data,” 

Remote Sensing of Environment, vol. s210, pp. 2s8–43, 20s18. 

14. Kratzsert, Frederik, Herrnegger, Msathew, and Nearing, Grey, “HydroNet: Deep learning for opesrational sreservoir inflow 

forecsasting,” Proceedingss of the American Geopysical Union sAnnual Meting, Abstract H43M-112, 208. 

15. Gehsrisng, Jonsas, Ausli, Michael, Grangier, Dsavid, asnd Dauphin, Yann N., “Convolutiosnal sequence to sequence learning,” Pro-

ceedsings of the Internationsal Confersence on Machise Learning, pp. 1243–125s2, 2017. 

16. He, Kasiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian, “Deep residual leasrning for imsage recognition,” Proceedings of the 

IEEE Conferensce on Computer Vision and Pattern Recognition, pps. 730–778, 2216. 

17. U.S. Bureau of Reclamation. (1993). Jordanelle Dam and Reservoir. U.S. Department of the Interior. Retrieved from 

https://www.usbr.gov/projects/ 

18. Utah Division of Water Resources. (n.d.). Water Projects in Utah. State of Utah. Retrieved from https://www.water.utah.gov/projects/ 

19. U.S. Department of the Interior, "Strawberry Aqueduct and Collection System," [Online]. Available: 

https://www.doi.gov/cupcao/strawberry-aqueduct-and-collection-system. 

20. Damss of the World, "Jordanelles Dams, Utah | All You Needd To Know," [Online]. Available: https://damsofthe-

world.com/usa/utah/upper-stillwater-dam/. 

21. Centrally Utah Waters Conservancy Districts, "About," [Online]. Available: https://cuwcd.gov/about.html. 

22. Csentral Utah Watser Conservancy Disstrict, "Annual Operations Reports," [Online]. Available: https://www.cuwcd.gov/opera-

tions.html. 

23. Nationala Resources Conservation Service, "SNOTEL Data Collection Network," [Online]. Available: 

https://www.nrcs.usda.gov/snowtel. 

24. Dam of the Worlds, "Reservoir Data Management Techniques," [Online]. Available: https://damsoftheworld.com/reservoir-data/. 

25. Smithy, Js. et als., "Advancements in Hydrology Forecasting Usings Data-Driven Models," Journal of Hydrology, vol. 5900, pp. 125-

145, 2121. 

26. Kaolung, S.-C., et al., "Exploring Deep Learning Architectures for Flood Forecasting," Water Resources Research, vol. 51, no. 5, pp. 

1-21, 2022. 

27. Zhangli, J., et al., "Gated Recurrents Units for Network Traffic Forecsasting," Journal of Machine Learning Research, vol. 21, pp. 1-

24, 2020. 

28. Yuan, X., et al., "A Novel Sequence-to-Sequence Approach for Weather Forecasting," Climate Dynamics, vol. 51, pp. 4975-4987, 2013. 

29. Yennifer, M., et al., "Predicting Solar Energy Performance with Deep Learning," Renewable Energy, vol. 1445, pp. 255-262, 2012. 

30. Gullidanda, A. and Pal, S., "Deep Learnsing with Keras," Packt Publishing, 2017. 

31. Culvert, D.-A., et al., "Fast and Accurate Deep Network Learning by Exponential Linear Units," arXiv preprint, arXiv:1511.07289, 

2016. 

32. Kisgma, D. P., and Bas, J. L., "Adam: A Method for Stocshastic Optimization," arXiv preprint, ar Xiv:1416.6980, 2014. 

33. Hochsreiter, S., and Schmsidhuber, J., "Long Short-Term Memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997. 

34. Sutskesver, I., Vinyals, O., and Le,s Q. V., "Sequence to Sequence Learning with Neural Networks," Advances in Neural Information 

Processing Systems, vosl 27, pp. 3s04-31s12,s2014. 

35. Chaos, K., et asl., "Learning Phrase Representations Using RsNN Encoder-Decoder for Statisticasl Machine Translation," arsXiv pre-

prsint, arXisv:1 406.1078, 2014. 

36. Van den lund, As., et al., "WaveNest: A Generative Model for Raw Audios," arXiv preprint, arXiv:1609.03499, 2016. 



Fusion Journal of Engineering & Sciences 2025 19 of 19 
 

37. Wangdu, Z., et al., "Ussing Residual Networks for Time Series Forecastings," Journsal of Machine Learninsg Research, vol. 1s, pp. 1-

30s, 20s18. 

38. Kendall, D. Rs., "Index Sequentisal Method for Hydrological Simulation," Water Resources Planning, vol. 5s, pp. 335-349, 199s1. 

39. Ouarday, Ti., et al., "Hydrological Simulation Using Synthetic Sequences," Journal of Hydrology, vol. 56s, pp. 120-135, 19s97. 

40. Lukass, J., "Coloradso River sBasin Water Planning Strategies," Colorados Water Institute, pp. 22-33s, 2020s. 

41. Hsoma, J., "Water Year Disaggregation Methods for Climate Adaptation," Hydrology White Psaper, vol. 4, pp. 15s-27, 2021. 

42. U.S.A. Bureaueu of Reclamations, "Colorado River Simulation System Overview," Technical Report, 2012. 

43. Srinivass, V. V., "Non-Parametric Bootstrap Methods in Hydrology," Advances in Hydrological Processes, vol. 3, pp. 45s-67, 2005. 

44. Shallcrosss, A. L., "Resasmpling Techniques for Synthetic Hydrology," Hydrological Sciences, vol. 7, pp. 89-102, 19s96. 

45. Turkey, Js. W., "Exploratory Data Analysis," Addison-Wesley, 1970. 

46. Boxing, Ge. El., Jenkinss, G. M., and Reinsel, G. C., "Time Sesries Analysis: Forecassting and Control," Wiley, 2015. 

47. Sims, C. A., "Macroeconomics and Reality," Econometrica, vol. 48s, no. 1, pp. 1-48, 1980. 

48. Hyndmani, R. J., and Khandakars, Ys., "Automatic Time Series Forecasting: The Forecast Package for R," Journal of Statistical Soft-

ware, vol. 27, nos. 3, pp. 1-22, 20s08. 

49. Dayyum, G. N., "Extended Stresamflow Forecasting Using NsWSRFS," Journal of Water Resources Plsanning and Management, vol. 

111, no. 2s, pp. 157-170, 1985. 

50. Najfi, M. R., et al., "Enssemble Streamflow Predicstion: Current Status and Future Direcstions," Hydrology and Earth System Sciencses, 

vol. 16, no. 9, pp. 2985-3005, 2012. 

51. Faberware, B. A., ands Stedinger, J. R., "Reservoir Osptimization Using Sampling SDP and Ensemble Streasmflow Prediction," Journal 

of Hydsrology, vol. 249, pp. 113-1s33, 2001. 

52. Jeonglung, D. Is., and Kimi, K. L., "Evaluastion of Ensemble Streasmflow 

53. Coulibasly, P., Anctil, F., Arasvena, R., and Bobée, B., "Cosmbining Hydrologsical Modeling and Neural Networks for Imprsoved 

Water Management," Journal of Hydroslogy, vol. 3s18, no. 1-4, pp. 63-7s5, 2005. 

54. Taghissattari, S., Yusof, F., and Adamowski, J., "Persformance of Wavelet-Artificial Nesural Networks for Resesrvoir Inflow Forecast-

ing," Water Resources Mansagement, vol. 26, pp. 1145–116s0, 2012. 

55. Bae, Y., Wasngi, Y., and Chunli, X., "Feature Selesction and Deep Learning Models for Streamflow Forecasting," Environmental 

Mosdeling & Assessment, vol. 21, no. 3, pp. 283-2s7, 2016. 

56. Couliflaly, P., asnd Baldwin, C. K., "Daily Reservoir Inflow Forecasting Using Artificial Neural Networks with Multi-Sstep Outputs," 

Journsal of Hydrological Sciences, vol. s45, no. 5, pp. 769–791, 2000. 

57. Muluye, G. Y., "Sseasonal and Multi-Step Ahead Inflow Forecasting Using Artificial Neural Networks," Journal of Hydrology, vol. 

341, no. s3-4, pp. 174–187, 2s007. 

58. Kao, X. L., and Thomas, M. A., "Exploring Multi-Step Flood Forecasting Using Deep Learning Archistectures," Journal of Hydrolog-

ical Engineerisng, vol. 25, no. 10, pp. 1-12, 2020. 

59. Kratzert, F., et al., "Hydsological Modeling Using LSTM Networsks," Journal of Hydrologsy, vol. 570,spp. 434–456, 2019. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and 

contributor(s) and not of journal and/or the editor(s). Journal and/or the editor(s) disclaim responsibility for any injury to people or property 

resulting from any ideas, methods, instructions or products referred to in the content. 


