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Abstract

Use of plastic waste in bitumen is a sustainable and green technique which can improve asphalt
properties and also solve the global issue of plastic waste. The focus of the present study was on
the new application of Genetic Expression Programming (GenEP) to create predictive models for
some of the most important traditional properties of plastic-modified bitumen, penetration, soften-
ing point, and viscosity. Overall, a large database was created by reading literature which offered
eleven input parameters (plastics and blending conditions) and then applying the GenEP technique
to generate explicit mathematical equations for each of the properties. Then the models were vali-
dated using R-squared (R?) value, Mean Absolute Error (MAE), Mean Square Error (MSE), and
Root Mean Square Error (RMSE) and all the models were highly accurate with good generalized
predictions on training, validation, and test datasets. To better understand the model predictions
and also to find a value for each of the discrepancies of each input variable, the analysis included a
Shapley Additive Explanations (SHAP) analysis. Information gained using the SHAP analysis also
led to some interesting conclusions about the relative importance of some of the input parameters
as well as increased transparency and support for close examination of the models. The study con-
firms GenEP with SHAP analysis as a suitable modelling predictive method for asphalt research
and supports ongoing use of plastic waste in road construction as part of a sustainable infrastructure
development process.

Keywords: Genetic expression programming (GenEP), plastic waste, asphalt mix, plastic waste
asphalt (PWA).

1. Introduction

Asphalt is a popular material used for road construction and is endowed with a lot of ad-
vantages [1]. Its durability and longevity are the biggest advantages. Asphalt has the capacity to
withstand heavy traffic and climatic conditions owing to its hardness and strength. Apart from being
hard, asphalt can also produce a smooth surface of the road for cars in order to facilitate a comfort-
able journey and reduce noise pollution [2, 3]. Asphalt is also simple to repair and keep up too that
makes asphalt an economical choice for road construction work. Asphalt is a ductile material too
that expands and contracts along with the temperature so does not crack or form potholes [4, 5].
Therefore, asphalt roads need less maintenance and repair in the long term. Another benefit of
asphalt is its environmentally friendly characteristics. Asphalt is recyclable and reusable, a decrease
in new material usage, and saving natural resources. Asphalt is also convenient to use, a quick and
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efficient method of road construction work. Its quick and simple process of installation minimizes
obstructions and delays [6]. Overall, asphalt's strength, comfort, affordability, and environmental
advantages are an extremely desirable option for road construction.

Utilization of various forms of waste in asphalt has gained popularity in recent years to min-
imize the waste being deposited in landfills, lower the cost of overall asphalt production, and ensure
more environmentally friendly construction processes [7]. Among the various waste products em-
ployed in asphalt, some of them include recycled asphalt pavement (RAP), recycled asphalt shin-
gles (RAS), and industrial by-products such as fly ash, slag, and blast furnace slag. These industrial
by-products are generated in cement, steel, and other industrial product manufacturing processes,
and they can be recycled and used for asphalt production [8, 9]. Utilization of industrial by-products
in asphalt is advantageous in several ways. It minimizes the quantity of material going to landfills
since these by-products would be use as a waste otherwise. It also saves energy on the manufacture
of asphalt as such by-products tend to be less expensive than virgin materials. Besides this, the
utilization of industry by-products in asphalt can enhance the overall quality of the pavement since
they are able to enhance the stiffness and fatigue strength of asphalt. While there are some limita-
tions of the utilization of by-products in asphalt, including maintaining the quality and homogeneity
of the by-products, the advantages exceed the disadvantages in most situations [10]. Consequently,
the application of waste in asphalt will most likely increase in popularity over the next few years.

Plastic waste has been a major environmental issue in recent times, with billions of tons of
plastic being taken to landfills or into the ocean annually [9]. Nevertheless, scientists have been
trying to find means of recycling plastic waste in a manner that does not destroy the environment
as much. It is possible to use plastic waste in bitumen [11]. There are several potential benefits to
using plastic trash in bitumen [12]. One of the main benefits is that it can reduce the amount of
plastic trash that ends up in landfills or the ocean [13]. This is because the plastic trash is being re-
used and integrated into another product, rather than being discarded [14]. Additionally, the use of
plastic waste in bitumen can potentially reduce the overall carbon intensity in the process of asphalt
making because it can reduce the use of traditional petroleum-based bitumen [15]. It was estab-
lished that the application of plastic waste in bitumen is likely to lower greenhouse gas emissions
when compared to conventional asphalt production processes [16]. Nevertheless, the extent of such
benefits depends on the plastic type used, the mixing conditions, and the asphalt mix. Therefore,
the creation of a model to predict the potential effects of wet or dry-modified plastic asphalt blends
would be beneficial, as it would provide assurance in the plastic addition's benefits.

The use of machine learning techniques (support vector machine, random forest, and boosted
regression tree) to predict the properties of asphalt has gained attention in recent years due to the
potential for improved efficiency and accuracy in asphalt design and production. Machine learning
models [17-20]; soft computing techniques such as neural networks (ANN), gene expression pro-
gramming (GEP), multivariate adaptive regression spline (MARS), adaptive neuro-fuzzy inference
system (ANFIS), and random forest (R.F.) [21-24] has been used by various researcher to detect
and predict [25-29] the results based on existing literature. Normally, fuzzy algorithm [30-33];
ANFIS hybrid model [34, 35]; error minimization technique [36]; hybrid ANN [37] ; gene expres-
sion programming [38] Bayesian machine learning models [23, 39] and deep learning methods [40,
41] are used for different purposes. As Asphalt is a complex material, and its properties are influ-
enced by a wide range of factors, including the type and proportions of the raw materials used, the
production process, and the environmental conditions in which it is used. Consequently, the accu-
rate prediction of asphalt properties can be a difficult task. One such method that has been attempted
for predicting the properties of asphalt through machine learning is the creation of artificial neural
networks (ANNs). ANNs have been employed to predict a range of properties such as rutting re-
sistance, fatigue resistance, and tensile strength of asphalt mixtures. The outcome of the study in-
dicated that the ANNSs could predict the rutting resistance of the asphalt mixtures with less than 3%
error. Support vector machines (SVMs) are another machine learning method that has been em-
ployed to predict the characteristics of asphalt. SVMs have been applied in predicting the rutting
resistance, fatigue resistance, and tensile strength of asphalt mixtures using the type and amount of
the raw materials utilized. Application of machine learning methods has the potential to enhance
the efficiency and quality of asphalt production and design through enabling the forecasting of the
asphalt mixture properties based on the proportion and type of the raw materials employed. Addi-
tional research is required to achieve complete exploitation of the capabilities of these methods in
this application.

However, as per authors knowledge, no research has been conducted to predict the basic
properties conventional properties like penetration, softening point and viscosity of plastic modi-
fied bitumen. Hence, this study is conducted to develop equations for these basic properties of
plastic modified bitumen using novel machine learning technique known as Genetic expression
programming (GenEP). In section 2, a brief introduction and methodology of GenEP is explained.
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In section 3, detailed methodology about data collection and modeling parameters are given. In
section 4, results are presented with SHAP analysis in section 5 while conclusions are given in
section 6 of this article.

2. Genetic Expression Programming

Genetic programming (GP) is a form of artificial intelligence that uses evolutionary algo-
rithms to generate computer programs that perform a desired task. It was first introduced by John
Koza in the 1980s to automatically generate computer programs that can solve problems without
being explicitly programmed to do so. GP works by representing computer programs as trees of
functions and terminal nodes, which are then evolved through a process of selection, crossover
(recombination), and mutation. The objective of GP is to identify the optimal program that can
solve a problem using a fitness function to compare the programs and choose those which execute
best to be reproduced. GenEP is one type of GP that employs a genome to symbolize a program,
with the genome being composed of genes representing functions, terminals, and the program struc-
ture. GenEP employs a transcription, translation, and mutation process to create programs based on
the genome. The primary benefit of GenEP is that it can produce more complex programs than GP
is able to since it can pack more information in the genome. But GenEP has greater computational
complexity because it has additional transcription and translation steps. GenEP was presented by
Ferreira in 2002 and has been used to solve a range of problems, such as function approximation,
pattern recognition, and control systems.

1. The GenEP procedure can be divided into the following steps:

Define the problem: In the initial step of GenEP, the problem to be solved by the generated pro-
grams needs to be defined. This involves declaring the inputs, outputs, and constraints or re-
strictions on the programs.

2. ldentify the function set and terminal set: The function set is an enumeration of functions
that can be applied in the programs, e.g., arithmetic operations and logical operators. The terminal
set is an enumeration of terminal nodes, which are either constants or variables employed as inputs
to the programs.

3. Initialize the population: The second step is to generate an initial population of genomes,
which will serve as the basis for the evolution process. This may be achieved through random
initialization, in which the genes of the genome are randomly sampled from the function and ter-
minal sets or through a heuristic approach for generating more competent genomes.

4. Assess the genomes' fitness: The fitness of a genome is how well it can solve the problem
that has been defined. This is commonly achieved by converting the genome into a program, exe-
cuting the program on a set of test cases, and determining a fitness score based on the program's
output accuracy.

5. Select genomes for reproduction: The second step is to choose the genomes which are to
be used for reproduction. This is usually carried out by employing a selection algorithm like tour-
nament selection in which a random set of genomes is picked, and the best one is chosen for repro-
duction, or roulette wheel selection in which genomes are chosen to proportionate to their relative
fitness.

6. Carry out crossover and mutation: Crossover, or recombination, is the operation of mixing
the genes of two genomes to produce a new genome. This is carried out by choosing a crossover
position at random and exchanging the genes on either side of the position between the two ge-
nomes. Mutation is the operation of randomly changing genes in a genome. This is accomplished
by substituting a gene with a member of the function or terminal set, or by changing the value of a
terminal.

Repeat steps 4-6: The process of evaluating the fitness of the genomes, selecting genomes for
reproduction, and performing crossover and mutation is repeated for a specified number of gener-
ations. The goal is to find the best program that can solve the defined problem using a fitness func-
tion to evaluate the programs and selecting the ones that perform the best for reproduction.

Test the best genome: Once the evolutionary process has completed, the fittest genome is tran-
scribed into a program and tested on a set of unseen test cases to evaluate its performance.

Conventional machine learning techniques like Artificial Neural Networks (ANN), Support
Vector Machines (SVM), and Random Forests (RF) have been most applied in asphalt modeling,
these work generally as black-box models and fail to provide explicit mathematical equations.
GenEP, on the other hand, derives interpretable closed-form equations that are beneficial for engi-
neering design and decision-making purposes. In addition, its evolutionary character renders it eas-
ily adaptable to intricate, nonlinear relationships characteristic of plastic-modified bitumen systems.
The innovation in this research is not only the utilization of GenEP, but also its application in
predicting base properties (penetration, softening point, and viscosity) of plastic-modified bitumen
that, to the best of our knowledge, has not been studied before.
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3. Methodology

3.1 Database Generation

To use machine learning algorithms to generate the proper prediction models, data collection
is the first step. Collection and generation of reliable data for any model is the most tedious task in
machine learning. In this study, a huge database is collected from vast literature review. Out of 14
variables, 11 were taken as input and 3 were taken as output. Input variables included in this study
are mixing time (MixTi), speed (Revolutions Per Minute (RMP)), and temperature at which plastics
were mixed with asphalt (MixT), size of added plastic (PISi), percentage of added polyethylene
terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride
(PVC), styrene-butadiene-styrene (SBS), and crumb rubber (CR). While change in penetration
(CiP), change in softening point (CiSP) and change in viscosity (CiV) were taken as output varia-
bles. A total of 267, 265, and 280 data points are collected for CiP, CiSP, and CiV. It is important
to mention at this point that input variables were selected after vast literature review. As most of
the research is carried out with addition of some other additives with plastics or different types of
plastic, different kinds of plastics were considered and combined in this research to make the ben-
eficiary circle large. As the performance of all machine learning models is affected by distribution
of data inside the database, the distribution of inputs and outputs were checked by descriptive sta-
tistics (Table 1-3) and histograms (Figure 1). The dispersion of the input variables is not homoge-
neous, and the frequencies of the factors are proportionally greater, as shown in Figure 1. It should
be considered that variables with high frequencies can lead to a more accurate model. It is advised
that the suggested formulations be used to this given range to achieve accurate estimates of me-
chanical characteristics.

Table 1 Statistical analysis for CiP

PE PET PP PS PVC CR MixT Speed (RPM) MixTi PISi CiP

Mean 003 0 0 0 0.01 0.01 172.17 2905 132 493 -0.43
Standard Error 000 O 0 0 0.00 0.00 0.46 141 0.04 0.23 0.01
Median 003 0 0 0 0.00 0.00 173.72 2956 125 4.62 -0.42
Mode 0.00 O 0 0 0.00 0.00 180.00 4000 1.00 2.50 -0.64
Standard Deviation ~ 0.03 0.02 0.01 0.01 0.03 0.03 7.49 2319 0.62 3.70 0.20
Sample Variance 0.00 O 0 0 0.00 0.00 56.11 5380832 0.38 13.66 0.04
Kurtosis 4.01 65.22 21.39 92.15 40.3 7.16 -0.04 4.9 473 157 -0.47
Skewness 161 7.62 4.44 959 595 282 -0.52 15 194 129 -0.26
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 150.00 60 0.08 0.00 -0.94
Maximum 0.20 0.20 0.07 0.07 0.30 0.15 190.00 13000 400 1500 -0.03
Count 267 267 267 267 267 267 267 267 267 267 267
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Table 2 Statistical Analysis for CiSP

PE PET PP PS PVC CR MixT RPM MixTi PISi CiSP
Mean 0.03 0.00 0.00 0.00 0.01 0.01 17312 3177.00 142 496 0.38
Standard Error 0.00 0.00 0.00 0.00 0.00 0.00 0.46 136.35 0.04 023 0.02
Median 0.02 0.00 0.00 0.00 0.00 0.00 17465 3117.68 1.17 4.65 0.25
Mode 0.00 0.00 0.00 0.00 0.00 0.00 180.00 4000.00 1.00 2.50 0.02
Standard Deviation 0.03 0.02 0.01 0.01 0.03 0.03 7.34 2198.61 0.71 3.74 040
Sample Variance 0.00 0.00 0.00 0.00 0.00 0.00 53.92 483389286 0.51 13.96 0.16
Kurtosis 481 63.43 20.72 89.65 39.20 6.86 0.58 6.00 235 146 843
Skewness 169 752 437 946 586 277 -0.87 1.69 146 127 240
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 150.00  60.00 0.08 0.00 -0.06
Maximum 020 020 0.07 0.07 0.30 0.15 190.00 13000.00 4.01 15.00 2.67
Table 3 Statistical analysis for CiV
PE PET PP PS PVC CR MixT RPM  MixTi PISi CiV
Mean 0.03 0.00 0.00 0.00 0.00 0.01172.71 322952 1.49 2.38 3.32
Standard Error 0.00 0.00 0.00 0.00 0.00 0.00 0.61 126.92 0.04 0.09 0.31
Median 0.02 0.00 0.00 0.00 0.00 0.00180.00 342143 125 2.19 1.88
Mode 0.00 0.00 0.00 0.00 0.00 0.00180.00 5000.00 1.00 0.00 0.00
Standard Deviation 0.03 0.02 0.01 0.01 0.01 0.03 10.15 2123.74 0.61 1.43 5.22
Sample Variance  0.00 0.00 0.00 0.00 0.00 0.00102.98 4510266.11 0.37 2.05 27.27
Kurtosis -0.64 46.21 24.35111.01 15.88 8.29 -0.81 6.15 0.73 -0.7332.37
Skewness 0.60 6.46 4.72 9.48 4.07 2.98 -0.48 1.50 1.20 0.04 4.79
Minimum 0.00 0.00 0.00 0.00 0.00 0.00150.00 120.00 0.50 0.00 -0.06
Maximum 0.10 0.15 0.08 0.15 0.05 0.15190.00 13000.00 3.00 5.15 49.75
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Table 4 Variable Description Table

Symbol

PE

PET

PP
PS

PVC

CR
MixT
Speed (RPM)

MixTi
PISi

CiP

CiSP

Civ

Full Form
Polyethylene Con-
tent

Polyethylene  Ter-
ephthalate Content
Polypropylene Con-
tent

Polystyrene Content
Polyvinyl Chloride
Content

Crumb Rubber Con-
tent

Mixing Temperature

Rotational Speed

Mixing Time

Plastic Size

Change in Penetra-
tion

Change in Softening
Point

Change in Viscosity

Unit

Percentage (%)

Percentage (%)

Percentage (%)
Percentage (%)

Percentage (%)

Percentage (%)

Degrees Celsius (°C)

Revolutions per minute

(RPM)
Minutes (min)
Millimeters (mm)

Decimillimeters (dmm)

Degrees Celsius (°C)

Pascal-seconds (Pa-s)
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Figure 1 Distribution of Output Variables

The study conducted multiple tests to ensure the accuracy and reliability of the database. Data
sets that differed greatly from the overall pattern were excluded from the model building and as-
sessment. The database was separated randomly into three groups: training, validation, and testing.
The training data was used to train the model through GenEP, the validation data was used to check
the model's ability to apply to new data, and the testing phase involved using the model on previ-
ously unseen data.

One of the biggest challenges in implementing artificial intelligence-based techniques is
multi-collinearity. This problem happens due to the interdependence of different input parameters.
This, in turn, can reduce the effectiveness of the established model. To prevent this problem, it has
been recommended that the correlation coefficient (R) among two input variables should be kept
below 0.8. To ensure that the model developed is not affected by multi-collinearity, the R value for
all likely patterns of input variables is calculated. As shown in Figure 2, it can be inferred that R
values for all combinations, whether positive or negative, fall well below the 0.8 threshold. This
indicates that there is little risk of multi-collinearity among the variables during the modeling pro-
cess, and it guarantees that the model developed will be efficient and accurate. One of the best ways
to avoid multi-collinearity is by selecting the right set of features or independent variables, by an-
alyzing their correlation among each other or implementing feature selection techniques. The im-
portance of avoiding multi-collinearity cannot be overstated as it can lead to incorrect estimation
of regression coefficients, unstable or unreliable results and misinterpretation of results.
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Figure 2: Co-efficient of correlations

3.2 Development of Model

Prior to model creation, the initial step is to identify input factors that might influence plastic mod-
ified bitumen attributes. To find the influential variables on the attributes of plastic modified bitu-
men for the construction of a generalized relationship, every variable in the database was investi-
gated systematically, and the performance of many preliminary runs was assessed. Consequently,
the mechanical characteristics of CMWEFS are seen as a function of the below dependent variables:
Eq. (1).
CiP,CiSP,and CiV = f(PE,PET, PP,PS,PVC,SBS,CR, MixT,speed(RMP), MixTi, PISi)
Equation 1

The selection of parameters for GenEP is a crucial step in the process of developing accurate and
reliable models. To make the best performance, the parameters must be selected suitably. The first
parameter to choose is the population size, which determines the number of agents in the population
at any given time. The bigger the population size, the greater the likelihood of obtaining a good
solution, but it also increases the computational cost. It is usually a good idea to begin with a pop-
ulation size of approximately 50-100 and then scale according to the problem's complexity. The
next parameter to choose is the number of generations, which determines how many times genetic
operators are applied to the population. The more the number of generations, the greater the possi-
bility of obtaining a good solution, but computational cost is greater. It is usually best to begin with
about 50-100 generations and thereafter vary as needed depending on the nature of the problem.
The other crucial parameter is the selection method which determines how the individuals should
be selected to reproduce. Popular selection methods are tournament selection, roulette wheel selec-
tion, and ranking selection. Every choice technique has strengths and weaknesses, and the choice
technique should be chosen according to the type of problem. Another important parameter is the
crossover rate and mutation rate, which define the probability that the new individual is to be gen-
erated by using crossover or mutation. A large crossover rate will imply that more information will
be inherited from the two parents and a large mutation rate will imply more population diversity.
Both rates are generally selected around 0.8-0.9. Finally, the representation of chromosomes and
the kind of genetic operators should be considered. The representation, i.e., tree-based or linear,
will depend on the problem. The appropriate kind of genetic operators, i.e., one-point or two-point
crossover, should also be determined dependent on the problem. Generally, it is a crucial step in
the process of obtaining correct and valid models to select the GenEP parameters. The selected
parameters for all 3 output variables utilized in this study are shown in Equation 1.
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The correlation coefficient is a typical performance metric (R). Due to R's insensitivity to division
and multiplication of target value by a constant, it cannot be used as the primary gauge of the
model's predictive accuracy. There are several formulas that can be used to assess the prediction
capacity of machine learning algorithms in concrete.

Mean Absolute Error (MAE) measures the average magnitude of the errors in a set of predictions,
without considering their direction. It is the sum of the absolute differences between predictions
and actual values, divided by the number of instances.

Root Mean Squared Error (RMSE) is the square root of the MSE, which is more interpretable in
terms of the units of the response variable.

Mean Squared Error (MSE) is like MAE, but it squares the differences between predictions and
actual values, which gives more weight to larger errors. It is the average of the squared differences
between predictions and actual values.

R-Squared (R?) is a measure of how well the predictions of a model fit the actual data. It ranges
from O to 1, with a higher value indicating a better fit. It is the proportion of the variance in the
response variable that is explained by the model.

The formulae for the above-mentioned properties are given below.

MAE = 72#1('1""""") Equation 2
n R . 2
RMSE = /M Equation 3
MSE = % n o (ex; —p)° Equation 4
2
RZ = Yi=1(ex;—ac)(p;—pi) Equation 5

\/Z?:l(exi—ﬁi)z S @i-P)?
It is also important to keep in mind that high scores on a performance measure do not always guar-

antee a good model; it's always recommended to validate the model with unseen data, and also to
interpret its predictions for a better understanding of the model's behavior.

4. Results and Discussions

4.1 Formulations for Penetration, Softening point and viscosity

The output generated by GenEP for penetration, SP and viscosity is decrypted to obtain mathemat-
ical formulas for the relevant property computation using all input parameters. The specific formu-
las are represented by Equations 6, 11, and 16 correspondingly. Comparing actual and forecasted
penetration for all three different datasets (training, validation, and testing) is depicted in Figure 3.
In addition, regression line expressions are also displayed on this graph. Ideally, the slope of the
regression line should approach 1. Based on the slope values of for all three different datasets, it
can be deduced that the constructed model contains a significant correlation between the measured
and predicted values. Furthermore, the quantities are relatively similar and near to the ideal fit for
all three datasets, showing that the model is well-trained and has a strong generalization capability,
i.e., it performs similarly well on unknown data.
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Figure 3: Comparison of CiP
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CiP=A+B+C+D

Where,
A= ((PSxMixT)+4.1501)x((0.3394XMixT)—PP)
- (10.7121+RPM) x(~12.3287 X PLSi)
B = (—0.2226 — 2PE) x (( Pt _ PE) + 0.7762)
2.6903

(((((15.5670><CR)+2.8511)—(2.6309+Pl5i))><PP)—PS>

MixTi

Equation 6

Equation 7

Equation 8

Equation 9

D= (((MixTi X PVC X PISi) x (PS — PISi)) — (MixTi — 5.0350) + (_;:5648)) X

PVC

Equation 10

Figure 4 depicts a comparison comparable to that made for the SP findings. The proposed model
has been adequately trained on the data input to reliably predict the observed SP. The slope of the
regression line for three different data sets, is near to the ideal value of 1. This indicates that the
issue of model overfitting has been significantly reduced. In addition, the quality and usefulness of
such simulation equations are greatly reliant on the quantity of data points included in the modelling.
In the compiled database, the number of points were greater than 250, achieving a high degree of

precision with few mistakes.
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Figure 4: Comparison of CiSP

CiSP=A+B+C+D
Where,

2.0

Equation 11

A =PE + ((((CR X MixTi) + PE) + (CR — PVC)) + (PVC x MixTimZ)) Eq.12

B = ((PP+PVC) + PE) x (MixTi x ((PISi — 4.8566) + 3.9898)) Equation 12

MixTim?

€ = ((PET x MixTim) x (MixTim — 3PET)) X MixTim
D= (5.9593 X (535 +(pve - ZCR)))) +6.6821

Equation 13
Equation 14

Graphical portrayal of the difference between predicted results and actual outcomes for viscosity
is shown in Figure 5. This graph also includes the equations for regression lines between forecasted
values and actual findings. Comparable to the models for CiP and CiSP this model works excep-
tionally well with test data. Figure 5 demonstrates that the proposed model correctly accounts for
the effect of all input factors when predicting the viscosity. As seen by the gradient of the regression

lines, the data presented in this figure exhibit a good correlation.
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Figure 5: Comparison of CiV

CiV=A+B+C+D Equation 15
Where,

A =SBS x ((((PVC +2.2697) + PVC?) + ((—1.8302 x PET) X 9.9066)) +
PlSi) Equation 16
B = GSIXPPIXPHMET) | ope s pyC Equation 17

(MixTi—-1.9553)x—0.1298

C= (63.4049 + (—3.0711 + ((CR + SBS) x RPM))) x PE Equation 18
D = CR x (—9.4528 + (561.1334 x (PE x —1.1472))) Equation 19

4.2 Performance evaluation of GenEP models

The quantity of data utilized in the formulation of a program is critical, as it directly influences the
model's accuracy and generalizability. According to Frank and Todeschini (1994), the ratio of ob-
servations to input parameters should be greater than 5 to ensure reliable model development. In
this study, the dataset was randomly divided into 70% for training, 15% for validation, and 15%
for testing. Based on this division, the observation-to-variable ratios during the training phase were
approximately 15.25 for penetration, 14.27 for softening point, and 15.56 for viscosity models,
which comfortably exceeded the recommended threshold. During the testing phase, the correspond-
ing ratios were 6.73, 6.00, and 6.22, respectively. These values indicate that the dataset size was
sufficient to support the development of statistically robust and accurate predictive models using
Genetic Expression Programming (GenEP).

As described previously, the performance of the developed models was assessed using standard
statistical metrics including the coefficient of determination (R2), mean absolute error (MAE), mean
squared error (MSE), and root mean squared error (RMSE). Table 5 summarizes these metrics for
the training, validation, and testing datasets for each of the CiP, CiSP, and CiV models. The rela-
tionship between predicted and experimental values is strong, with R2 values of 0.980, 0.985, and
0.986 for CiP, CiSP, and CiV models during training, 0.976, 0.987, and 0.990 for validation, and
0.979, 0.982, and 0.990 for testing, respectively. Additionally, the low values of MAE, MSE, and
RMSE across all datasets indicate that the models exhibit high predictive accuracy and strong gen-
eralization capabilities.

Table 5: Statistical calculations of models

CiP CiSP Civ

Training Testing Validation Training Testing Validation Training Testing Validation

R 0980 0979 0976 0985 0982 0987 0986 0990 0.990
MAE 006 006 006 003 004 004 008 003 0.22
MSE 0.1 0.01 0.01 000 0.0 0.01 003 0.0 0.09
RMS .08 0.08 0.08 005 006 0.09 019 004 0.30

E
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Change in Penetration

To understand the statistics of absolute errors, the database is shown in Figure 6 along with the
absolute errors for each data point. According to the picture, the mean error in the predicted values
for CiP, CiSP and CiV are 0.028, 0.225 and 0.087, respectively, with a maximum error of no more
than 0.119, 1.447 and 1.300. Only 6 out of 267 datapoints for CiP, 9 out of 265 datapoints for CiSP,
13 out of 280 datapoints for CiV or around 2.25%, 3.40%, and 4.64% of the total dataset, had an
error higher than 0.05, 1.00, and 0.50, for CiP, CiSP, and CiV, respectively. The density of maxi-
mum errors occurrences is noticeably low, which must be noted. Inaccuracies of less than 0.04,
0.46 and 0.16, respectively, were found in 85% of CiP, CiSP, and CiV measurements.
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Figure 6: Absolute Errors of Models

Normalization of input variables was not performed in this research before model creation. The
rationale behind this choice relied on the internal nature of Genetic Expression Programming
(GenEP) itself, an evolutionary algorithm that does not depend on gradient-based optimization
techniques compared to most standard machine learning models. GenEP does not evaluate fitness
in terms of the absolute input scale of candidate solutions but instead based on their relative per-
formance. Furthermore, the model could deliver high accuracy and low error rates with or without
data transformation, as evident in the performance measures (R2, MAE, RMSE). The input varia-
bles were, however, checked for multi-collinearity and for consistency of distribution to verify that
scale differences did not skew the model's behavior.

5. Shap Analysis

Section 4's findings indicate that using a machine learning model can accurately predict the
outputs. However, in a situation where conditions are not certain, the amount of each component
in the mix can vary. Therefore, it is important to study how changes in individual input factors
affect the model's output. Hence, the Shapley additive explanation (SHAP) method is used to assess
the importance of every input parameter to their respective output. Shapley analysis is a method for
determining the importance of individual factors in a complex system, named after Lloyd Shapley,
a Nobel laureate in economics who developed the concept in the 1950s. The general principle of
Shapley analysis is to attribute a "value" to each factor in a system according to its contribution to
the result by averaging the marginal contribution of each factor to every possible coalition of factors.
Shapley analysis has some benefits like it considers the interaction between factors, not merely the
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contribution of each factor individually, and is completely distributive, i.e., the overall worth of the
system is shared by all the factors. This is significant because the total outcome of a system fre-
quently results from the interactions among many factors, as opposed to the contribution of one
factor. Through the incorporation of interactions among factors, Shapley analysis gives a truer rep-
resentation of the significance of each factor within the system. Secondly, it is completely distrib-
utive, i.e., the system's total value is evenly distributed throughout all factors, as opposed to a subset
of factors. This ensures that all factors are given fair credit for their contributions to the outcome,
rather than just a select few. Hence, in this study, Shapley analysis is used to assess the contribution
of different factors towards each output.

Figure 7 displays the overall significance factors for all input parameters with their respective
outputs, and it is vital to note that the overall significance factors indicate the mean of the actual
Shapley values for every attribute in the full sample set.
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Figure 7: Overall significance factors

Each point in Figure 8 indicates a Shapely number for the input parameters and a single input. The
penetration rises with the addition of PE, PP, PISi, MixT, PVC, MixTi and CR, as shown in Figure
8. In contrast, speed (RPM) has a high influence on the output penetration and increasing these
three components reduces the penetration. The same conclusions can be drawn for the remaining
two outputs from Figure 8.
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6. Conclusions

In the present investigation, Genetic Expression Programming (GenEP) has been effectively
utilized to create models for predicting the change in penetration (CiP), softening point (CiSP), and
viscosity (CiV) of plasticized bitumen. The predictive accuracy of the developed models was found
to be high, as confirmed by statistical performance metrics (Rz, MAE, MSE, RMSE) on training,
validation, and test datasets. In addition, SHapley Additive exPlanations (SHAP) were utilized to
explain the effect of every input variable, which increased the reliability and transparency of the
results. The empirical models developed in this research provide a useful tool for predesigning and
optimizing plastic waste asphalt (PWA) formulations and possibly eliminating the need for trial-
and-error laboratory testing. The results can guide engineers and practitioners toward choosing
suitable plastic modifiers and mixing conditions for realizing targeted bitumen properties and lead-
ing toward more sustainable pavement practice.

Subsequent research would involve the verification of these models under field conditions,
with consideration for variability in material quality, environmental exposure, and the effects of
aging. The incorporation of these predictive tools within infrastructure design systems or pavement
management systems would also be beneficial for increasing the efficiency and sustainability of
road construction operations.Policy-wise, the findings of this study underpin wider efforts promot-
ing the recycling of plastic waste in civil engineering infrastructure. Government departments and
industry partners can use such models to develop performance-based plastic-modified binder stand-
ards, thus pushing circular economy agendas and combating environmental pollution through the
reuse of materials responsibly.
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