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Abstract 

Use of plastic waste in bitumen is a sustainable and green technique which can improve asphalt 

properties and also solve the global issue of plastic waste. The focus of the present study was on 

the new application of Genetic Expression Programming (GenEP) to create predictive models for 

some of the most important traditional properties of plastic-modified bitumen, penetration, soften-

ing point, and viscosity. Overall, a large database was created by reading literature which offered 

eleven input parameters (plastics and blending conditions) and then applying the GenEP technique 

to generate explicit mathematical equations for each of the properties. Then the models were vali-

dated using R-squared (R²) value, Mean Absolute Error (MAE), Mean Square Error (MSE), and 

Root Mean Square Error (RMSE) and all the models were highly accurate with good generalized 

predictions on training, validation, and test datasets. To better understand the model predictions 

and also to find a value for each of the discrepancies of each input variable, the analysis included a 

Shapley Additive Explanations (SHAP) analysis. Information gained using the SHAP analysis also 

led to some interesting conclusions about the relative importance of some of the input parameters 

as well as increased transparency and support for close examination of the models. The study con-

firms GenEP with SHAP analysis as a suitable modelling predictive method for asphalt research 

and supports ongoing use of plastic waste in road construction as part of a sustainable infrastructure 

development process. 

Keywords: Genetic expression programming (GenEP), plastic waste, asphalt mix, plastic waste 

asphalt (PWA). 

 

1. Introduction 

Asphalt is a popular material used for road construction and is endowed with a lot of ad-

vantages [1]. Its durability and longevity are the biggest advantages. Asphalt has the capacity to 

withstand heavy traffic and climatic conditions owing to its hardness and strength. Apart from being 

hard, asphalt can also produce a smooth surface of the road for cars in order to facilitate a comfort-

able journey and reduce noise pollution [2, 3]. Asphalt is also simple to repair and keep up too that 

makes asphalt an economical choice for road construction work. Asphalt is a ductile material too 

that expands and contracts along with the temperature so does not crack or form potholes [4, 5]. 

Therefore, asphalt roads need less maintenance and repair in the long term. Another benefit of 

asphalt is its environmentally friendly characteristics. Asphalt is recyclable and reusable, a decrease 

in new material usage, and saving natural resources. Asphalt is also convenient to use, a quick and 
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efficient method of road construction work. Its quick and simple process of installation minimizes 

obstructions and delays [6]. Overall, asphalt's strength, comfort, affordability, and environmental 

advantages are an extremely desirable option for road construction. 

Utilization of various forms of waste in asphalt has gained popularity in recent years to min-

imize the waste being deposited in landfills, lower the cost of overall asphalt production, and ensure 

more environmentally friendly construction processes [7]. Among the various waste products em-

ployed in asphalt, some of them include recycled asphalt pavement (RAP), recycled asphalt shin-

gles (RAS), and industrial by-products such as fly ash, slag, and blast furnace slag. These industrial 

by-products are generated in cement, steel, and other industrial product manufacturing processes, 

and they can be recycled and used for asphalt production [8, 9]. Utilization of industrial by-products 

in asphalt is advantageous in several ways. It minimizes the quantity of material going to landfills 

since these by-products would be use as a waste otherwise. It also saves energy on the manufacture 

of asphalt as such by-products tend to be less expensive than virgin materials. Besides this, the 

utilization of industry by-products in asphalt can enhance the overall quality of the pavement since 

they are able to enhance the stiffness and fatigue strength of asphalt. While there are some limita-

tions of the utilization of by-products in asphalt, including maintaining the quality and homogeneity 

of the by-products, the advantages exceed the disadvantages in most situations [10]. Consequently, 

the application of waste in asphalt will most likely increase in popularity over the next few years. 

Plastic waste has been a major environmental issue in recent times, with billions of tons of 

plastic being taken to landfills or into the ocean annually [9]. Nevertheless, scientists have been 

trying to find means of recycling plastic waste in a manner that does not destroy the environment 

as much. It is possible to use plastic waste in bitumen [11]. There are several potential benefits to 

using plastic trash in bitumen [12]. One of the main benefits is that it can reduce the amount of 

plastic trash that ends up in landfills or the ocean [13]. This is because the plastic trash is being re-

used and integrated into another product, rather than being discarded [14]. Additionally, the use of 

plastic waste in bitumen can potentially reduce the overall carbon intensity in the process of asphalt 

making because it can reduce the use of traditional petroleum-based bitumen [15]. It was estab-

lished that the application of plastic waste in bitumen is likely to lower greenhouse gas emissions 

when compared to conventional asphalt production processes [16]. Nevertheless, the extent of such 

benefits depends on the plastic type used, the mixing conditions, and the asphalt mix. Therefore, 

the creation of a model to predict the potential effects of wet or dry-modified plastic asphalt blends 

would be beneficial, as it would provide assurance in the plastic addition's benefits. 

The use of machine learning techniques (support vector machine, random forest, and boosted 

regression tree) to predict the properties of asphalt has gained attention in recent years due to the 

potential for improved efficiency and accuracy in asphalt design and production. Machine learning 

models [17-20]; soft computing techniques such as neural networks (ANN), gene expression pro-

gramming (GEP), multivariate adaptive regression spline (MARS), adaptive neuro-fuzzy inference 

system (ANFIS), and random forest (R.F.) [21-24] has been used by various researcher to detect 

and predict [25-29] the results based on existing literature. Normally, fuzzy algorithm [30-33]; 

ANFIS hybrid model [34, 35]; error minimization technique [36]; hybrid ANN [37] ; gene expres-

sion programming [38] Bayesian machine learning models [23, 39] and deep learning methods [40, 

41] are used for different purposes. As Asphalt is a complex material, and its properties are influ-

enced by a wide range of factors, including the type and proportions of the raw materials used, the 

production process, and the environmental conditions in which it is used. Consequently, the accu-

rate prediction of asphalt properties can be a difficult task. One such method that has been attempted 

for predicting the properties of asphalt through machine learning is the creation of artificial neural 

networks (ANNs). ANNs have been employed to predict a range of properties such as rutting re-

sistance, fatigue resistance, and tensile strength of asphalt mixtures. The outcome of the study in-

dicated that the ANNs could predict the rutting resistance of the asphalt mixtures with less than 3% 

error. Support vector machines (SVMs) are another machine learning method that has been em-

ployed to predict the characteristics of asphalt. SVMs have been applied in predicting the rutting 

resistance, fatigue resistance, and tensile strength of asphalt mixtures using the type and amount of 

the raw materials utilized. Application of machine learning methods has the potential to enhance 

the efficiency and quality of asphalt production and design through enabling the forecasting of the 

asphalt mixture properties based on the proportion and type of the raw materials employed. Addi-

tional research is required to achieve complete exploitation of the capabilities of these methods in 

this application. 

However, as per authors knowledge, no research has been conducted to predict the basic 

properties conventional properties like penetration, softening point and viscosity of plastic modi-

fied bitumen. Hence, this study is conducted to develop equations for these basic properties of 

plastic modified bitumen using novel machine learning technique known as Genetic expression 

programming (GenEP). In section 2, a brief introduction and methodology of GenEP is explained. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/neural-network
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In section 3, detailed methodology about data collection and modeling parameters are given. In 

section 4, results are presented with SHAP analysis in section 5 while conclusions are given in 

section 6 of this article.  

2. Genetic Expression Programming 

Genetic programming (GP) is a form of artificial intelligence that uses evolutionary algo-

rithms to generate computer programs that perform a desired task. It was first introduced by John 

Koza in the 1980s to automatically generate computer programs that can solve problems without 

being explicitly programmed to do so. GP works by representing computer programs as trees of 

functions and terminal nodes, which are then evolved through a process of selection, crossover 

(recombination), and mutation. The objective of GP is to identify the optimal program that can 

solve a problem using a fitness function to compare the programs and choose those which execute 

best to be reproduced. GenEP is one type of GP that employs a genome to symbolize a program, 

with the genome being composed of genes representing functions, terminals, and the program struc-

ture. GenEP employs a transcription, translation, and mutation process to create programs based on 

the genome. The primary benefit of GenEP is that it can produce more complex programs than GP 

is able to since it can pack more information in the genome. But GenEP has greater computational 

complexity because it has additional transcription and translation steps. GenEP was presented by 

Ferreira in 2002 and has been used to solve a range of problems, such as function approximation, 

pattern recognition, and control systems. 

1. The GenEP procedure can be divided into the following steps: 

Define the problem: In the initial step of GenEP, the problem to be solved by the generated pro-

grams needs to be defined. This involves declaring the inputs, outputs, and constraints or re-

strictions on the programs. 

2. Identify the function set and terminal set: The function set is an enumeration of functions 

that can be applied in the programs, e.g., arithmetic operations and logical operators. The terminal 

set is an enumeration of terminal nodes, which are either constants or variables employed as inputs 

to the programs. 

3. Initialize the population: The second step is to generate an initial population of genomes, 

which will serve as the basis for the evolution process. This may be achieved through random 

initialization, in which the genes of the genome are randomly sampled from the function and ter-

minal sets or through a heuristic approach for generating more competent genomes. 

4. Assess the genomes' fitness: The fitness of a genome is how well it can solve the problem 

that has been defined. This is commonly achieved by converting the genome into a program, exe-

cuting the program on a set of test cases, and determining a fitness score based on the program's 

output accuracy. 

5. Select genomes for reproduction: The second step is to choose the genomes which are to 

be used for reproduction. This is usually carried out by employing a selection algorithm like tour-

nament selection in which a random set of genomes is picked, and the best one is chosen for repro-

duction, or roulette wheel selection in which genomes are chosen to proportionate to their relative 

fitness. 

6. Carry out crossover and mutation: Crossover, or recombination, is the operation of mixing 

the genes of two genomes to produce a new genome. This is carried out by choosing a crossover 

position at random and exchanging the genes on either side of the position between the two ge-

nomes. Mutation is the operation of randomly changing genes in a genome. This is accomplished 

by substituting a gene with a member of the function or terminal set, or by changing the value of a 

terminal. 

Repeat steps 4-6: The process of evaluating the fitness of the genomes, selecting genomes for 

reproduction, and performing crossover and mutation is repeated for a specified number of gener-

ations. The goal is to find the best program that can solve the defined problem using a fitness func-

tion to evaluate the programs and selecting the ones that perform the best for reproduction. 

Test the best genome: Once the evolutionary process has completed, the fittest genome is tran-

scribed into a program and tested on a set of unseen test cases to evaluate its performance. 

Conventional machine learning techniques like Artificial Neural Networks (ANN), Support 

Vector Machines (SVM), and Random Forests (RF) have been most applied in asphalt modeling, 

these work generally as black-box models and fail to provide explicit mathematical equations. 

GenEP, on the other hand, derives interpretable closed-form equations that are beneficial for engi-

neering design and decision-making purposes. In addition, its evolutionary character renders it eas-

ily adaptable to intricate, nonlinear relationships characteristic of plastic-modified bitumen systems. 

The innovation in this research is not only the utilization of GenEP, but also its application in 

predicting base properties (penetration, softening point, and viscosity) of plastic-modified bitumen 

that, to the best of our knowledge, has not been studied before. 
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3. Methodology 

3.1 Database Generation 

To use machine learning algorithms to generate the proper prediction models, data collection 

is the first step. Collection and generation of reliable data for any model is the most tedious task in 

machine learning. In this study, a huge database is collected from vast literature review. Out of 14 

variables, 11 were taken as input and 3 were taken as output. Input variables included in this study 

are mixing time (MixTi), speed (Revolutions Per Minute (RMP)), and temperature at which plastics 

were mixed with asphalt (MixT), size of added plastic (PlSi), percentage of added polyethylene 

terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride 

(PVC), styrene-butadiene-styrene (SBS), and crumb rubber (CR). While change in penetration 

(CiP), change in softening point (CiSP) and change in viscosity (CiV) were taken as output varia-

bles. A total of 267, 265, and 280 data points are collected for CiP, CiSP, and CiV. It is important 

to mention at this point that input variables were selected after vast literature review. As most of 

the research is carried out with addition of some other additives with plastics or different types of 

plastic, different kinds of plastics were considered and combined in this research to make the ben-

eficiary circle large. As the performance of all machine learning models is affected by distribution 

of data inside the database, the distribution of inputs and outputs were checked by descriptive sta-

tistics (Table 1-3) and histograms (Figure 1). The dispersion of the input variables is not homoge-

neous, and the frequencies of the factors are proportionally greater, as shown in Figure 1. It should 

be considered that variables with high frequencies can lead to a more accurate model. It is advised 

that the suggested formulations be used to this given range to achieve accurate estimates of me-

chanical characteristics. 

Table 1 Statistical analysis for CiP 
 

 PE PET PP PS PVC CR MixT Speed (RPM) MixTi PlSi CiP 

Mean 0.03 0 0 0 0.01 0.01 172.17 2905 1.32 4.93 -0.43 

Standard Error 0.00 0 0 0 0.00 0.00 0.46 141 0.04 0.23 0.01 

Median 0.03 0 0 0 0.00 0.00 173.72 2956 1.25 4.62 -0.42 

Mode 0.00 0 0 0 0.00 0.00 180.00 4000 1.00 2.50 -0.64 

Standard Deviation 0.03 0.02 0.01 0.01 0.03 0.03 7.49 2319 0.62 3.70 0.20 

Sample Variance 0.00 0 0 0 0.00 0.00 56.11 5380832 0.38 13.66 0.04 

Kurtosis 4.01 65.22 21.39 92.15 40.3 7.16 -0.04 4.9 4.73 1.57 -0.47 

Skewness 1.61 7.62 4.44 9.59 5.95 2.82 -0.52 1.5 1.94 1.29 -0.26 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 150.00 60 0.08 0.00 -0.94 

Maximum 0.20 0.20 0.07 0.07 0.30 0.15 190.00 13000 4.00 15.00 -0.03 

Count 267 267 267 267 267 267 267 267 267 267 267 
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Table 2 Statistical Analysis for CiSP 
 

 PE PET PP PS PVC CR MixT RPM MixTi PlSi CiSP 

Mean 0.03 0.00 0.00 0.00 0.01 0.01 173.12 3177.00 1.42 4.96 0.38 

Standard Error 0.00 0.00 0.00 0.00 0.00 0.00 0.46 136.35 0.04 0.23 0.02 

Median 0.02 0.00 0.00 0.00 0.00 0.00 174.65 3117.68 1.17 4.65 0.25 

Mode 0.00 0.00 0.00 0.00 0.00 0.00 180.00 4000.00 1.00 2.50 0.02 

Standard Deviation 0.03 0.02 0.01 0.01 0.03 0.03 7.34 2198.61 0.71 3.74 0.40 

Sample Variance 0.00 0.00 0.00 0.00 0.00 0.00 53.92 4833892.86 0.51 13.96 0.16 

Kurtosis 4.81 63.43 20.72 89.65 39.20 6.86 0.58 6.00 2.35 1.46 8.43 

Skewness 1.69 7.52 4.37 9.46 5.86 2.77 -0.87 1.69 1.46 1.27 2.40 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 150.00 60.00 0.08 0.00 -0.06 

Maximum 0.20 0.20 0.07 0.07 0.30 0.15 190.00 13000.00 4.01 15.00 2.67 

 

Table 3 Statistical analysis for CiV 

 PE PET PP PS PVC CR MixT RPM MixTi PlSi CiV  

Mean 0.03 0.00 0.00 0.00 0.00 0.01 172.71 3229.52 1.49 2.38 3.32 

Standard Error 0.00 0.00 0.00 0.00 0.00 0.00 0.61 126.92 0.04 0.09 0.31 

Median 0.02 0.00 0.00 0.00 0.00 0.00 180.00 3421.43 1.25 2.19 1.88 

Mode 0.00 0.00 0.00 0.00 0.00 0.00 180.00 5000.00 1.00 0.00 0.00 

Standard Deviation 0.03 0.02 0.01 0.01 0.01 0.03 10.15 2123.74 0.61 1.43 5.22 

Sample Variance 0.00 0.00 0.00 0.00 0.00 0.00 102.98 4510266.11 0.37 2.05 27.27 

Kurtosis -0.64 46.21 24.35 111.01 15.88 8.29 -0.81 6.15 0.73 -0.73 32.37 

Skewness 0.60 6.46 4.72 9.48 4.07 2.98 -0.48 1.50 1.20 0.04 4.79 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 150.00 120.00 0.50 0.00 -0.06 

Maximum 0.10 0.15 0.08 0.15 0.05 0.15 190.00 13000.00 3.00 5.15 49.75 
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Table 4 Variable Description Table 

Symbol Full Form Unit 

PE 
Polyethylene Con-

tent 
Percentage (%) 

PET 
Polyethylene Ter-

ephthalate Content 
Percentage (%) 

PP 
Polypropylene Con-

tent 
Percentage (%) 

PS Polystyrene Content Percentage (%) 

PVC 
Polyvinyl Chloride 

Content 
Percentage (%) 

CR 
Crumb Rubber Con-

tent 
Percentage (%) 

MixT Mixing Temperature Degrees Celsius (°C) 

Speed (RPM) Rotational Speed 
Revolutions per minute 

(RPM) 

MixTi Mixing Time Minutes (min) 

PlSi Plastic Size Millimeters (mm) 

CiP 
Change in Penetra-

tion 
Decimillimeters (dmm) 

CiSP 
Change in Softening 

Point 
Degrees Celsius (°C) 

CiV Change in Viscosity Pascal-seconds (Pa·s) 
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Figure 1 Distribution of Output Variables 

The study conducted multiple tests to ensure the accuracy and reliability of the database. Data 

sets that differed greatly from the overall pattern were excluded from the model building and as-

sessment. The database was separated randomly into three groups: training, validation, and testing. 

The training data was used to train the model through GenEP, the validation data was used to check 

the model's ability to apply to new data, and the testing phase involved using the model on previ-

ously unseen data. 

One of the biggest challenges in implementing artificial intelligence-based techniques is 

multi-collinearity. This problem happens due to the interdependence of different input parameters. 

This, in turn, can reduce the effectiveness of the established model. To prevent this problem, it has 

been recommended that the correlation coefficient (R) among two input variables should be kept 

below 0.8. To ensure that the model developed is not affected by multi-collinearity, the R value for 

all likely patterns of input variables is calculated. As shown in Figure 2, it can be inferred that R 

values for all combinations, whether positive or negative, fall well below the 0.8 threshold. This 

indicates that there is little risk of multi-collinearity among the variables during the modeling pro-

cess, and it guarantees that the model developed will be efficient and accurate. One of the best ways 

to avoid multi-collinearity is by selecting the right set of features or independent variables, by an-

alyzing their correlation among each other or implementing feature selection techniques. The im-

portance of avoiding multi-collinearity cannot be overstated as it can lead to incorrect estimation 

of regression coefficients, unstable or unreliable results and misinterpretation of results. 
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Figure 2: Co-efficient of correlations 

3.2 Development of Model 

Prior to model creation, the initial step is to identify input factors that might influence plastic mod-

ified bitumen attributes. To find the influential variables on the attributes of plastic modified bitu-

men for the construction of a generalized relationship, every variable in the database was investi-

gated systematically, and the performance of many preliminary runs was assessed. Consequently, 

the mechanical characteristics of CMWFS are seen as a function of the below dependent variables: 

Eq. (1). 

𝐶𝑖𝑃, 𝐶𝑖𝑆𝑃, 𝑎𝑛𝑑 𝐶𝑖𝑉 = 𝑓(𝑃𝐸, 𝑃𝐸𝑇, 𝑃𝑃, 𝑃𝑆, 𝑃𝑉𝐶, 𝑆𝐵𝑆, 𝐶𝑅, 𝑀𝑖𝑥𝑇, 𝑠𝑝𝑒𝑒𝑑(𝑅𝑀𝑃), 𝑀𝑖𝑥𝑇𝑖, 𝑃𝑙𝑆𝑖) 

Equation 1 

The selection of parameters for GenEP is a crucial step in the process of developing accurate and 

reliable models. To make the best performance, the parameters must be selected suitably. The first 

parameter to choose is the population size, which determines the number of agents in the population 

at any given time. The bigger the population size, the greater the likelihood of obtaining a good 

solution, but it also increases the computational cost. It is usually a good idea to begin with a pop-

ulation size of approximately 50-100 and then scale according to the problem's complexity. The 

next parameter to choose is the number of generations, which determines how many times genetic 

operators are applied to the population. The more the number of generations, the greater the possi-

bility of obtaining a good solution, but computational cost is greater. It is usually best to begin with 

about 50-100 generations and thereafter vary as needed depending on the nature of the problem. 

The other crucial parameter is the selection method which determines how the individuals should 

be selected to reproduce. Popular selection methods are tournament selection, roulette wheel selec-

tion, and ranking selection. Every choice technique has strengths and weaknesses, and the choice 

technique should be chosen according to the type of problem. Another important parameter is the 

crossover rate and mutation rate, which define the probability that the new individual is to be gen-

erated by using crossover or mutation. A large crossover rate will imply that more information will 

be inherited from the two parents and a large mutation rate will imply more population diversity. 

Both rates are generally selected around 0.8-0.9. Finally, the representation of chromosomes and 

the kind of genetic operators should be considered. The representation, i.e., tree-based or linear, 

will depend on the problem. The appropriate kind of genetic operators, i.e., one-point or two-point 

crossover, should also be determined dependent on the problem. Generally, it is a crucial step in 

the process of obtaining correct and valid models to select the GenEP parameters. The selected 

parameters for all 3 output variables utilized in this study are shown in Equation 1. 
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The correlation coefficient is a typical performance metric (R). Due to R's insensitivity to division 

and multiplication of target value by a constant, it cannot be used as the primary gauge of the 

model's predictive accuracy. There are several formulas that can be used to assess the prediction 

capacity of machine learning algorithms in concrete. 

Mean Absolute Error (MAE) measures the average magnitude of the errors in a set of predictions, 

without considering their direction. It is the sum of the absolute differences between predictions 

and actual values, divided by the number of instances. 

Root Mean Squared Error (RMSE) is the square root of the MSE, which is more interpretable in 

terms of the units of the response variable. 

Mean Squared Error (MSE) is like MAE, but it squares the differences between predictions and 

actual values, which gives more weight to larger errors. It is the average of the squared differences 

between predictions and actual values. 

R-Squared (R2) is a measure of how well the predictions of a model fit the actual data. It ranges 

from 0 to 1, with a higher value indicating a better fit. It is the proportion of the variance in the 

response variable that is explained by the model. 

The formulae for the above-mentioned properties are given below.  

𝑀𝐴𝐸 =  
∑ (|𝑒𝑥𝑖−𝑝𝑖|)𝑛

𝑖=1

𝑛
   Equation 2 

𝑅𝑀𝑆𝐸 =  √∑ (𝑒𝑥𝑖−𝑝𝑖)𝑛
𝑖=1

2

𝑛
   Equation 3 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑒𝑥𝑖 − 𝑝𝑖)𝑛

𝑖=1
2
   Equation 4 

𝑅2 =  (
∑ (𝑒𝑥𝑖−𝑎𝑐̅̅̅̅ 𝑖)(𝑝𝑖−𝑝̅𝑖)𝑛

𝑖=1

√∑ (𝑒𝑥𝑖−𝑎𝑐̅̅̅̅ 𝑖)2 ∑ (𝑝𝑖−𝑝̅𝑖)2𝑛
𝑖=1

𝑛
𝑖=1

)

2

  Equation 5 

It is also important to keep in mind that high scores on a performance measure do not always guar-

antee a good model; it's always recommended to validate the model with unseen data, and also to 

interpret its predictions for a better understanding of the model's behavior. 

4. Results and Discussions 

4.1 Formulations for Penetration, Softening point and viscosity 

The output generated by GenEP for penetration, SP and viscosity is decrypted to obtain mathemat-

ical formulas for the relevant property computation using all input parameters. The specific formu-

las are represented by Equations 6, 11, and 16 correspondingly. Comparing actual and forecasted 

penetration for all three different datasets (training, validation, and testing) is depicted in Figure 3. 

In addition, regression line expressions are also displayed on this graph. Ideally, the slope of the 

regression line should approach 1. Based on the slope values of for all three different datasets, it 

can be deduced that the constructed model contains a significant correlation between the measured 

and predicted values. Furthermore, the quantities are relatively similar and near to the ideal fit for 

all three datasets, showing that the model is well-trained and has a strong generalization capability, 

i.e., it performs similarly well on unknown data. 

 

Figure 3: Comparison of CiP 
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𝐶𝑖𝑃 = 𝐴 + 𝐵 + 𝐶 + 𝐷        Equation 6 

Where, 

𝐴 =
((𝑃𝑆×𝑀𝑖𝑥𝑇)+4.1501)×((0.3394×𝑀𝑖𝑥𝑇)−𝑃𝑃)

(10.7121+𝑅𝑃𝑀)×(−12.3287×𝑃𝑙𝑆𝑖)
     Equation 7 

𝐵 =  (−0.2226 − 2𝑃𝐸) × ((
𝑃𝑙𝑆𝑖

2.6903
− 𝑃𝐸) + 0.7762)   Equation 8 

𝐶 =
(((((15.5670×𝐶𝑅)+2.8511)−(2.6309+𝑃𝑙𝑆𝑖))×𝑃𝑃)−𝑃𝑆)

𝑀𝑖𝑥𝑇𝑖
    Equation 9 

𝐷 = (((𝑀𝑖𝑥𝑇𝑖 × 𝑃𝑉𝐶 × 𝑃𝑙𝑆𝑖) × (𝑃𝑆 − 𝑃𝑙𝑆𝑖)) − (𝑀𝑖𝑥𝑇𝑖 − 5.0350) + (
𝑃𝑉𝐶

−8.7548
)) ×

𝑃𝑉𝐶           Equation 10 

Figure 4 depicts a comparison comparable to that made for the SP findings. The proposed model 

has been adequately trained on the data input to reliably predict the observed SP. The slope of the 

regression line for three different data sets, is near to the ideal value of 1. This indicates that the 

issue of model overfitting has been significantly reduced. In addition, the quality and usefulness of 

such simulation equations are greatly reliant on the quantity of data points included in the modelling. 

In the compiled database, the number of points were greater than 250, achieving a high degree of 

precision with few mistakes. 

 

Figure 4: Comparison of CiSP 

𝐶𝑖𝑆𝑃 = 𝐴 + 𝐵 + 𝐶 + 𝐷        Equation 11 

Where, 

𝐴 = 𝑃𝐸 + ((((𝐶𝑅 × 𝑀𝑖𝑥𝑇𝑖) + 𝑃𝐸) + (𝐶𝑅 − 𝑃𝑉𝐶)) + (𝑃𝑉𝐶 × 𝑀𝑖𝑥𝑇𝑖𝑚2)) Eq.12 

𝐵 = ((
𝑃𝑃+𝑃𝑉𝐶

𝑀𝑖𝑥𝑇𝑖𝑚2) + 𝑃𝐸) × (𝑀𝑖𝑥𝑇𝑖 × ((𝑃𝑙𝑆𝑖 − 4.8566) + 3.9898)) Equation 12 

𝐶 =  ((𝑃𝐸𝑇 × 𝑀𝑖𝑥𝑇𝑖𝑚) × (𝑀𝑖𝑥𝑇𝑖𝑚 − 3𝑃𝐸𝑇)) × 𝑀𝑖𝑥𝑇𝑖𝑚  Equation 13 

𝐷 =  (5.9593 × (𝑆𝐵𝑆 + ((𝑃𝑉𝐶 − 2𝐶𝑅)))) + 6.6821   Equation 14 

Graphical portrayal of the difference between predicted results and actual outcomes for viscosity 

is shown in Figure 5. This graph also includes the equations for regression lines between forecasted 

values and actual findings. Comparable to the models for CiP and CiSP this model works excep-

tionally well with test data. Figure 5 demonstrates that the proposed model correctly accounts for 

the effect of all input factors when predicting the viscosity. As seen by the gradient of the regression 

lines, the data presented in this figure exhibit a good correlation. 
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Figure 5: Comparison of CiV 

𝐶𝑖𝑉 = 𝐴 + 𝐵 + 𝐶 + 𝐷        Equation 15 

Where, 

𝐴 = 𝑆𝐵𝑆 × ((((𝑃𝑉𝐶 + 2.2697) + 𝑃𝑉𝐶2) + ((−1.8302 × 𝑃𝐸𝑇) × 9.9066)) +

𝑃𝑙𝑆𝑖)           Equation 16 

𝐵 =  
(𝑃𝑙𝑆𝐼×𝑃𝑃)×(𝑃𝑙𝑆𝑖+𝑀𝑖𝑥𝑇𝑖)

(𝑀𝑖𝑥𝑇𝑖−1.9553)×−0.1298
+ 𝑆𝐵𝑆 × 𝑃𝑉𝐶     Equation 17 

𝐶 =  (63.4049 + (−3.0711 + ((𝐶𝑅 + 𝑆𝐵𝑆) × 𝑅𝑃𝑀))) × 𝑃𝐸 Equation 18 

𝐷 = 𝐶𝑅 × (−9.4528 + (561.1334 × (𝑃𝐸 × −1.1472)))  Equation 19 

4.2 Performance evaluation of GenEP models 

The quantity of data utilized in the formulation of a program is critical, as it directly influences the 

model's accuracy and generalizability. According to Frank and Todeschini (1994), the ratio of ob-

servations to input parameters should be greater than 5 to ensure reliable model development. In 

this study, the dataset was randomly divided into 70% for training, 15% for validation, and 15% 

for testing. Based on this division, the observation-to-variable ratios during the training phase were 

approximately 15.25 for penetration, 14.27 for softening point, and 15.56 for viscosity models, 

which comfortably exceeded the recommended threshold. During the testing phase, the correspond-

ing ratios were 6.73, 6.00, and 6.22, respectively. These values indicate that the dataset size was 

sufficient to support the development of statistically robust and accurate predictive models using 

Genetic Expression Programming (GenEP). 

As described previously, the performance of the developed models was assessed using standard 

statistical metrics including the coefficient of determination (R²), mean absolute error (MAE), mean 

squared error (MSE), and root mean squared error (RMSE). Table 5 summarizes these metrics for 

the training, validation, and testing datasets for each of the CiP, CiSP, and CiV models. The rela-

tionship between predicted and experimental values is strong, with R² values of 0.980, 0.985, and 

0.986 for CiP, CiSP, and CiV models during training, 0.976, 0.987, and 0.990 for validation, and 

0.979, 0.982, and 0.990 for testing, respectively. Additionally, the low values of MAE, MSE, and 

RMSE across all datasets indicate that the models exhibit high predictive accuracy and strong gen-

eralization capabilities. 

Table 5: Statistical calculations of models 

  
CiP CiSP CiV 

Training Testing Validation Training Testing Validation Training Testing Validation 

R2 0.980 0.979 0.976 0.985 0.982 0.987 0.986 0.990 0.990 

MAE 0.06 0.06 0.06 0.03 0.04 0.04 0.08 0.03 0.22 

MSE 0.01 0.01 0.01 0.00 0.00 0.01 0.03 0.00 0.09 

RMS
E 

0.08 0.08 0.08 0.05 0.06 0.09 0.19 0.04 0.30 
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To understand the statistics of absolute errors, the database is shown in Figure 6 along with the 

absolute errors for each data point. According to the picture, the mean error in the predicted values 

for CiP, CiSP and CiV are 0.028, 0.225 and 0.087, respectively, with a maximum error of no more 

than 0.119, 1.447 and 1.300. Only 6 out of 267 datapoints for CiP, 9 out of 265 datapoints for CiSP, 

13 out of 280 datapoints for CiV or around 2.25%, 3.40%, and 4.64% of the total dataset, had an 

error higher than 0.05, 1.00, and 0.50, for CiP, CiSP, and CiV, respectively. The density of maxi-

mum errors occurrences is noticeably low, which must be noted. Inaccuracies of less than 0.04, 

0.46 and 0.16, respectively, were found in 85% of CiP, CiSP, and CiV measurements. 

  

 

       Figure 6: Absolute Errors of Models 

Normalization of input variables was not performed in this research before model creation. The 

rationale behind this choice relied on the internal nature of Genetic Expression Programming 

(GenEP) itself, an evolutionary algorithm that does not depend on gradient-based optimization 

techniques compared to most standard machine learning models. GenEP does not evaluate fitness 

in terms of the absolute input scale of candidate solutions but instead based on their relative per-

formance. Furthermore, the model could deliver high accuracy and low error rates with or without 

data transformation, as evident in the performance measures (R², MAE, RMSE). The input varia-

bles were, however, checked for multi-collinearity and for consistency of distribution to verify that 

scale differences did not skew the model's behavior. 

5. Shap Analysis 

Section 4's findings indicate that using a machine learning model can accurately predict the 

outputs. However, in a situation where conditions are not certain, the amount of each component 

in the mix can vary. Therefore, it is important to study how changes in individual input factors 

affect the model's output. Hence, the Shapley additive explanation (SHAP) method is used to assess 

the importance of every input parameter to their respective output. Shapley analysis is a method for 

determining the importance of individual factors in a complex system, named after Lloyd Shapley, 

a Nobel laureate in economics who developed the concept in the 1950s. The general principle of 

Shapley analysis is to attribute a "value" to each factor in a system according to its contribution to 

the result by averaging the marginal contribution of each factor to every possible coalition of factors. 

Shapley analysis has some benefits like it considers the interaction between factors, not merely the 
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contribution of each factor individually, and is completely distributive, i.e., the overall worth of the 

system is shared by all the factors. This is significant because the total outcome of a system fre-

quently results from the interactions among many factors, as opposed to the contribution of one 

factor. Through the incorporation of interactions among factors, Shapley analysis gives a truer rep-

resentation of the significance of each factor within the system. Secondly, it is completely distrib-

utive, i.e., the system's total value is evenly distributed throughout all factors, as opposed to a subset 

of factors. This ensures that all factors are given fair credit for their contributions to the outcome, 

rather than just a select few. Hence, in this study, Shapley analysis is used to assess the contribution 

of different factors towards each output.  

Figure 7 displays the overall significance factors for all input parameters with their respective 

outputs, and it is vital to note that the overall significance factors indicate the mean of the actual 

Shapley values for every attribute in the full sample set. 

  

 

Figure 7: Overall significance factors 

Each point in Figure 8 indicates a Shapely number for the input parameters and a single input. The 

penetration rises with the addition of PE, PP, PlSi, MixT, PVC, MixTi and CR, as shown in Figure 

8. In contrast, speed (RPM) has a high influence on the output penetration and increasing these 

three components reduces the penetration. The same conclusions can be drawn for the remaining 

two outputs from Figure 8. 
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Figure 8: SHAP Values 

6. Conclusions 

In the present investigation, Genetic Expression Programming (GenEP) has been effectively 

utilized to create models for predicting the change in penetration (CiP), softening point (CiSP), and 

viscosity (CiV) of plasticized bitumen. The predictive accuracy of the developed models was found 

to be high, as confirmed by statistical performance metrics (R², MAE, MSE, RMSE) on training, 

validation, and test datasets. In addition, SHapley Additive exPlanations (SHAP) were utilized to 

explain the effect of every input variable, which increased the reliability and transparency of the 

results.The empirical models developed in this research provide a useful tool for predesigning and 

optimizing plastic waste asphalt (PWA) formulations and possibly eliminating the need for trial-

and-error laboratory testing. The results can guide engineers and practitioners toward choosing 

suitable plastic modifiers and mixing conditions for realizing targeted bitumen properties and lead-

ing toward more sustainable pavement practice. 

Subsequent research would involve the verification of these models under field conditions, 

with consideration for variability in material quality, environmental exposure, and the effects of 

aging. The incorporation of these predictive tools within infrastructure design systems or pavement 

management systems would also be beneficial for increasing the efficiency and sustainability of 

road construction operations.Policy-wise, the findings of this study underpin wider efforts promot-

ing the recycling of plastic waste in civil engineering infrastructure. Government departments and 

industry partners can use such models to develop performance-based plastic-modified binder stand-

ards, thus pushing circular economy agendas and combating environmental pollution through the 

reuse of materials responsibly. 
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