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Abstract 9 

This paper applies gradient boosting (GB), a machine learning (ML) methodology for modeling 10 

the tensile strength (TS) of concrete made with waste plastic. Firstly, for development of GB mod- 11 

els, the database including 235 data records was obtained from the existing studies. Following that, 12 

several GB models were developed by using the combination of different hyperparameters and their 13 

performance was validated through several statistical metrics. The optimum model achieved R² 14 

values of 0.9 and 0.89 for the training and testing datasets, respectively. The root mean square error 15 

(RMSE) was noted as 0.29 MPa for training and only marginally higher at 0.32 MPa in testing 16 

meanwhile mean absolute error (MAE) was found 0.25 MPa in training and 0.27 MPa in testing. 17 

These results demonstrate the capability of GB modeling in predicting TS of concrete. 18 

Keywords: Gradient boosting; Waste plastic concrete; Tensile strength 19 

 20 

1. Introduction 21 

The incorporation of waste plastic (WP) into concrete mixtures is gaining popularity as a sustain- 22 

able method for lowering the amount of pollution in the environment and improving the concrete 23 

properties [1]. WP in concrete not only reduces the disposal issues of WP but also enhances the 24 

mechanical properties of the concrete [2], [3]. Accurate prediction of the TS of such modified 25 

concrete is crucial for its practical application in construction. Conventional methods for deter- 26 

mining concrete strength are often laborious and expensive [4], [5]. In this context, ML tech- 27 

niques, particularly GB, offer a promising alternative by providing efficient and reliable predic- 28 

tions [6]. 29 

Gradient Boosting (GB) is an ensemble method that constructs models in sequence to rectify 30 

the inaccuracies of preceding models, hence enhancing predictive precision. This study aims to 31 

develop a GB model to predict the TS of concrete containing WP using a dataset collected from 32 

the literature. The model's accuracy was evaluated using R², RMSE, and MAE metrics, providing 33 

insights into its efficacy for this application [7]. 34 
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2. Materials and Methods 36 

2.1. Data Collection 37 

A dataset comprising 235 data points was compiled from various research studies that inves- 38 

tigated the TS of concrete containing WP [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], 39 

[19], [20], [21], [22], [23]. The data points included various features such as the amount of plastic, 40 

concrete mix proportions, curing time, and measured TS. 41 

2.2. Data preprocessing 42 

During the data preprocessing phase, missing values were substituted with the corresponding 43 

feature to maintain data integrity. Subsequently, normalization and feature scaling were performed 44 

to bring all variables to a comparable range. Finally, the database was split into training and testing 45 

subsets using a 70:30 ratio to assist model training and performance evaluation. The statistical 46 

summary and distribution of data are presented in Table 1 and Figure. 1, which show the random 47 

distribution of entries in the entire domain. 48 

Table 1: Statistics for developed database. 49 

Inputs Plastic Cement Gravel Water Age Sand TS. 

SD 153.50 68.30 214.20 34.60 9.60 132.40 0.90 

Range 637.00 255.00 1059.20 135.30 21.00 823.60 4.70 

Skewness 1.50 0.30 -0.70 -0.20 -0.90 -0.80 0.30 

Mean 113.10 407.00 849.50 194.70 21.70 678.10 2.80 

 50 
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 52 

Figure 1: Database distribution plots. 53 

2.3. Model development 54 

The Gradient Boosting model was implemented in Python using the XGBoost library. In this 55 

approach, decision trees are generated sequentially, and each new tree aims to reduce the errors 56 

made by the previous trees. To achieve the best predictive performance, the main hyperparameters; 57 

learning rate, maximum tree depth, and the number of trees were carefully tuned using a grid search 58 

method. 59 

  60 
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2.4. Model Evaluation 61 

The efficacy of the GB model was measured using R², RMSE, and MAE. These measures 62 

provide a thorough evaluation of the model's accurateness and error distribution. The R² value in- 63 

dicates how good the GB model’s predictions fit the actual data points. RMSE and MAE measure 64 

the average magnitude of prediction errors. 65 

3. Results and discussions 66 

The GB model showed excellent predictive ability, achieving R² values of 0.90 for training 67 

and 0.89 for testing, as seen in Figure. 2 (a) and Table 2. Similarly, the low RMSE values of 0.29 68 

MPa (training) and 0.32 MPa (testing) suggest that the model’s predictions are very close to the 69 

actual tensile strength values. Additionally, the error distribution in Figure. 2 (b) shows that most 70 

prediction errors are under 0.4 MPa, confirming the model’s reliability and accuracy. 71 

 72 

Figure 2: GB performance evaluation plots (a) regression plot and (b) absolute error plot. 73 

Table 2: Statistical performance metrics outcomes for the GB model. 74 

Phase RMSE R2 MAE 

GB-Training 0.291 0.901 0.227 

GB-Testing 0.317 0.891 0.254 

 75 

These results clearly demonstrate the effectiveness of GB in predicting the TS of concrete 76 

containing WP. According to the literature [24], an R² value above 0.8 indicates good predictive 77 

accuracy, which is achieved in this case. Likewise, the low RMSE and MAE values further confirm 78 

that the model’s predictions are precise and reliable. The model’s high accuracy is due to its capac- 79 

ity to learn how the input features interact to influence the target which is tensile strength in this 80 

case. Moreover, using GB in this context aligns with the broader trend of employing advanced ML 81 

techniques in civil engineering to enhance material mix design and properties prediction. The find- 82 

ings support the feasibility of incorporating WP in concrete, contributing to sustainable construc- 83 

tion practices. 84 

4. Conclusions 85 

This study demonstrates the effectiveness of Gradient Boosting in predicting the tensile 86 

strength of concrete incorporating waste plastic. The model demonstrated strong predictive perfor- 87 

mance, attaining R² values of 0.88 (training) and 0.89 (testing), along with low RMSE values of 88 

0.29 MPa (training) and 0.32 MPa (testing), indicating reliable predictive results. These results 89 
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suggest that GB can be a valuable addition to the toolkit for designing and evaluating sustainable 90 

concrete materials. Future work could explore the application of other ML techniques and expand 91 

the dataset to further improve prediction accuracy and generalizability. 92 
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