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Abstract 11 

Interlayer bonding strength (IBS) plays a pivotal role in 3D-printed concrete (3DPC), emphasizing 12 

the need for a reliable predictive model. A new hybrid model is proposed in this study, which 13 

leverages the gorilla troops optimizer (GTO) to fine-tune the hyperparameters of the extreme gra- 14 

dient boosting (XGBoost) algorithm. For comparison, XGBoost and decision tree (DT) models 15 

were also developed. To enhance interpretability, SHapley Additive exPlanations (SHAP) were 16 

employed to highlight the most influential factors affecting IBS. The proposed GTO-XGBoost 17 

model outperformed the other approaches, attaining a correlation coefficient of 0.974, compared to 18 

0.958 for XGBoost and 0.930 for DT. The findings demonstrate that the GTO-XGBoost model 19 

offers a reliable solution for predicting IBS, contributing to the advancement of 3D printing tech- 20 

nology in construction.  21 

Keywords: Interlayer bonding strength; 3D concrete printing; machine learning; gorilla troops op- 22 

timizer; intelligent prediction 23 

 24 

1. Introduction 25 

Conventional construction methods are costly, time-consuming, and offer limited design flex- 26 

ibility. They also require a large labor force, which can be difficult to use in remote or dangerous 27 

areas [1,2]. To solve these problems, the construction industry started exploring automation in the 28 

1950s. In the mid-1990s, Khoshnevis introduced one of the first ideas for 3D-printed concrete 29 

(3DPC) at the University of Southern California [3]. Since then, interest in 3DPC has increased a 30 

lot, leading to more research and projects around the world. However, a major problem is the weak 31 

bonding between the printed layers [4]. The layer-by-layer printing process often causes weak 32 

bonding, creating cold joints. These are poorly connected areas that reduce the structure’s strength, 33 

stiffness, and ability to carry loads [5]. Therefore, enhancing interlayer bonding strength (IBS) is 34 

vital to ensure the reliability and longevity of 3D-printed structures [6]. To address this, researchers 35 

have investigated various strategies to improve IBS. For instance, Wolfs et al. [7] conducted ex- 36 

perimental studies to analyze how printing factors like layer interval, nozzle height, and surface 37 

moisture influence bonding performance. Likewise, Moelich et al. [8] designed a computational 38 

model to investigate how surface moisture affects IBS. However, these approaches face inherent 39 

limitations: experimental methods require significant time and resources, while simulation 40 
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outcomes can be sensitive to initial assumptions and parameter configurations, potentially impact- 41 

ing their reliability. 42 

Lately, the use of machine learning (ML) has gained importance as a promising approach for 43 

advancing concrete research. It helps improve the accuracy of predicting different concrete prop- 44 

erties. ML has been used to predict compressive strength, flexural and tensile behavior, flow prop- 45 

erties, and how well concrete can be printed [9–12]. However, using ML to predict the IBS of 3DPC 46 

is still relatively unexplored. Most studies focus on other properties, so there is still a gap in pre- 47 

dicting IBS of 3DPC. Traditional methods such as empirical correlation-based models [7], numer- 48 

ical simulations [8], and thermo-fluid dynamics analyses [6] are often constrained by their inability 49 

to identify globally optimal solutions. This highlights the increasing importance of applying robust 50 

ML-based models capable of accurately predicting IBS and advancing 3DPC technology. 51 

This study introduces a hybrid predictive model that combines the gorilla troops optimizer 52 

(GTO) with the extreme gradient boosting (XGBoost) algorithm, where GTO is used to optimize 53 

the model’s hyperparameters. For comparative purposes, standalone decision tree (DT) and 54 

XGBoost models were developed. A total of 146 data points, sourced from existing experimental 55 

studies, were used to train and evaluate the models. To interpret the model’s output and identify 56 

the most influential variables affecting the IBS of 3DPC, SHapley Additive exPlanations (SHAP) 57 

were applied. This work demonstrates the value of applying advanced ML techniques to improve 58 

the structural performance assessment of 3DPC, thereby supporting further innovation in 3D con- 59 

struction practices. 60 

2. Research approach 61 

2.1. Data description 62 

To accurately estimate the IBS of 3DPC, a dataset with 146 records was collected from pub- 63 

lished experimental studies. The model uses 16 input variables [13]. These variables include both 64 

the material mix and the printing process settings (Figure 1). These comprehensive inputs aim to 65 

capture the key factors influencing IBS in 3D-printed concrete. Table 1 presents the statistical 66 

summary variables used in this study. 67 

To accurately estimate the IBS of 3DPC, a dataset with 146 records was collected from pub- 68 

lished experimental studies. The model uses 16 input variables [13]. These variables include both 69 

the material mix and the printing process settings (Figure 1). These comprehensive inputs aim to 70 

capture the key factors influencing IBS in 3D-printed concrete. Table 1 presents the statistical 71 

summary variables used in this study. 72 

 73 

Figure 1. Overview of input parameters 74 
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Table 1. Statistical description of the dataset 75 

Statistics OPC SAC SF FA NC S MAXSS TA 

Mean 787.77 73.17 81.62 8.45 17.90 1123.28 1.48 1.46 

Median 850.00 50.00 0.00 0.00 0.00 1200.00 0.80 0.00 

Mode 850.00 0.00 0.00 0.00 0.00 1500.00 0.60 0.00 

SD 326.51 83.38 112.52 36.18 62.16 520.74 1.57 4.81 

Maximum 
1400.0

0 
405.00 250.00 162.00 400.00 1750.00 5.00 30.00 

Minimum 270.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Statistics ESA SP/B W/B ICA TI PS LH LW 

Mean 1.04 0.00 0.38 21.99 99.63 102.17 14.47 30.70 

Median 0.00 0.00 0.39 0.00 20.00 80.00 10.00 20.00 

Mode 0.00 0.00 0.44 0.00 0.00 120.00 10.00 20.00 

SD 1.44 0.00 0.08 43.55 293.18 78.54 8.87 26.64 

Maximum 3.30 0.02 0.50 160.00 1440.00 300.00 50.00 145.00 

Minimum 0.00 0.00 0.23 0.00 0.00 4.23 6.00 10.00 

2.2. Model development 76 

A hybrid model was developed by using the GTO to fine-tune the settings of the XGBoost 77 

algorithm. This helped improve the model’s accuracy and prediction results. To compare perfor- 78 

mance, separate XGBoost and DT models were also built. The dataset used had 146 values taken 79 

from published experiments and included important factors that affect the IBS of 3DPC. The data 80 

was split into two parts: 80% was used to train the models, and 20% was used for evaluating their 81 

performance. Table 2 shows the settings (hyperparameters) used for the GTO-XGBoost, XGBoost, 82 

and DT models during training. These settings were carefully chosen to help the models better 83 

understand the data and improve their predictions. 84 

Table 2. Configured hyperparameters of the models 85 

Parameter Setting 
Optimized 

value 

XGBoost   

Max tree depth 3-10 6 

Data subset for training each tree 0.5-1 0.7521 

Features for training a tree 0.5-1 0.07521 

Increment per each iteration 0.01-0.3 0.0122 

Drop in loss during a split 0-5 0.0972 

GTO   

Candidate solution in each iteration 20-100 20 

Max optimization iterations 10-100 50 

Reproducibility seed Any integer 42 

Perturbation range +/- 0.1 +/-0.1 

Candidate solution adjustment Random uniform perturbation 
Exploitation and 

exploration base 

DT   
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Reproducibility random seed Any integer 42 

Splitting at each node Random, best Best 

Features for ideal split Sqrt, auto, none, log2 None 

Min samples for a leaf node 1-50 5 

Samples to divide internal node 2-50 10 

 86 

3. Results and discussions 87 

3.1. Regression analysis 88 

The regression slopes of the developed machine learning models demonstrate their predictive 89 

accuracy (Figure 2). The GTO-XGBoost model demonstrated the best performance, achieving re- 90 

gression slopes of 0.96 (training) and 0.93 (testing). The XGBoost model followed with regression 91 

slopes of 0.90 during training and 0.87 during testing, showcasing its robustness but slightly lower 92 

accuracy compared to the hybrid model. Similarly, the DT model demonstrated reliable perfor- 93 

mance, highlighting its reliable yet less optimized performance relative to the other models. These 94 

results emphasize the effectiveness of hybrid approaches, such as GTO-XGBoost, in improving 95 

predictive capabilities. 96 

 97 

  

DT XGBoost 

 

GTO-XGBoost 

Figure 2. Regression analysis 98 
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3.2. Statistical assessment 99 

The statistical indicators demonstrate the performance of the developed ML models (Table 100 

3). In the training phase, GTO-XGBoost model showed the highest accuracy, with a coefficient of 101 

correlation (R2) value of 0.972, an adjusted R2 value of 0.975, a mean absolute error (MAE) of 1.54, 102 

and a root mean square error (RMSE) of 1.23. The XGBoost model followed with R2 at 0.956, 103 

adjusted R2 at 0.953, RMSE at 1.76, and MAE at 2.67. The DT model demonstrated comparatively 104 

lower performance, with R2 at 0.924, adjusted R2 at 0.932, RMSE at 2.76, and MAE at 2.98. 105 

In the testing phase, the GTO-XGBoost model continued to outperform the others, with R2 at 106 

0.974, adjusted R2 at 0.981, RMSE at 1.34, and MAE at 1.23. The XGBoost model maintained 107 

consistent performance with R2 at 0.958, adjusted R2 at 0.953, RMSE at 1.87, and MAE at 2.43. 108 

The DT model, while reliable, displayed lower accuracy compared to the hybrid models, with R2 109 

at 0.93, adjusted R2 at 0.941, RMSE at 2.43, and MAE at 2.78. These results indicate that the GTO- 110 

XGBoost model outperformed both the XGBoost and DT models during training and testing (Fig- 111 

ure 3). This proves that the hybrid model is strong and dependable when dealing with complex 112 

data. 113 

Table 3. Performance of the developed models 114 

 R2 Adj R2 RMSE MAE 

Training phase     

GTO-XGBoost 0.972 0.975 1.23 1.54 

XGBoost 0.956 0.953 1.76 2.67 

DT 0.924 0.932 2.76 2.98 

Testing phase     

GTO-XGBoost 0.974 0.981 1.34 1.23 

XGBoost 0.958 0.953 1.87 2.43 

DT 0.93 0.941 2.43 2.78 

 115 

 116 
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Figure 3. Spider plots of statistical indicators 117 

3.3. SHAP interpretation 118 

Figure 3 presents the mean SHAP plot, illustrating the contributions of various parameters to 119 
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0.90, highlighting its significant influence on the model's output. Following PS, SF had a mean 121 

SHAP value of 0.52, suggesting it also plays a notable role in predictions. Additionally, SP/B 122 

demonstrated a mean SHAP value of 0.19, reflecting its comparatively lesser impact on the model. 123 

Furthermore, the SHAP summary plot depicted in Figure 4 reveals the relationships between var- 124 

ious parameters and IBS. The analysis indicates that IBS increases with an increase in PS and SF, 125 

highlighting their positive influence on the model's predictions. Notably, SF exhibits a wide range 126 

of influence, with SHAP values reaching as high as 0.8 and dropping to about -0.9, indicating its 127 

significant variability in impact. Additionally, IBS increases with an increase in S, suggesting that 128 

higher sand content positively affects bond strength. Conversely, an increase in SAC correlates 129 

with a decrease in IBS, indicating a detrimental effect on bond strength as SAC content rises. Over- 130 

all, these findings underscore the complex interactions among the parameters influencing IBS in 131 

the model. 132 

 133 

 134 

 135 

Figure 4. Mean SHAP plot 136 

 137 

 138 

Figure 5. SHAP summary plot 139 

4. Conclusions 140 
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This study introduces a novel hybrid model that utilizes the GTO to fine-tune the settings of 141 

the XGBoost algorithm for predicting the IBS of 3DPC. For comparison, XGBoost and DT models 142 

were also developed. The key findings are as follows. 143 

• The study underscores the enhanced effectiveness of the GTO-XGBoost model relative to 144 

both ensemble and individual models. The developed hybrid model consistently outperformed 145 

the XGBoost and DT models, demonstrating its strength in understanding complex data pat- 146 

terns. 147 

• Additionally, the ensemble model performed better than the individual model. 148 

• The SHAP values revealed that for IBS, PS was the most critical feature, followed by SF and 149 

SP/B. 150 
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Abbreviations 162 

The following abbreviations are used in this manuscript: 163 

IBS Interlayer bonding strength 

DT Decision tree 

GTO Gorilla troops optimizer 

XGBoost Extreme gradient boosting 

3DPC 3D-printed concrete 

SHAP SHapley Additive exPlanations  

ML Machine learning 
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