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Abstract

Structural health monitoring (SHM) is necessary to ensure durability and safety of steel bridges that
are regarded as important elements of modern infrastructure. The structural integrity of bridges is
very essential in order to keep them running and free of danger to the public. There has been a lot
of research done on the prediction of damage locations in multi-span steel bridges, while relatively
limited attention has been given to the identification and quantification of damage based on the level
of severity in single-span steel bridges. This study provides an innovative method that integrates
modal strain energy-based damage indices and data-driven artificial neural networks (ANNSs) to
provide damage localization and quantification in the form of damage severity in single-span steel
bridges. The first two bending mode shapes obtained in the validated FE model were used to calcu-
late the damage indices which was then combine using the absolute value method in determining
the localization of damage in different damage scenarios created on the FE model. To predict the
severity using these damage indices, ANNs were used with a large dataset created using cubic spline
interpolations and FE simulations. This methodology reduces computational effort through a
streamlined method for structural health monitoring while maintaining high accuracy in severity
prediction and damage detection, enhancing infrastructure safety and maintenance.

Keywords: Finite Element Modeling; Modal Strain Energy-Based Damage Index; Damage Severity;
Bending Modes; Artificial Neural Networks; Damage Detection.

1. Introduction
Bridges are a significant component of many infrastructures’ development, and thus they are sus-
ceptible to easy destruction caused by alternate load characteristics, via wear and tear, earth tremors
and impacts of weather conditions [1-7]. Damage can be observed in different bridge components,
potentially leading to weakening and collapse of the structure. The safety of a bridge diminishes
when defects in the structure become large, which means chances of a component-level or overall
structural failures. Therefore, obtaining health of infrastructure, especially bridges, is become es-
sential. Traditionally, bridge condition assessments have relied primarily on visual inspections, a
nondestructive evaluation technique that is limited to detecting visible damage [5]. To prevent struc-

tural failures, structural health monitoring using smart techniques is necessary to assess structural
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damage at early stages However, utilizing recorded data to accurately estimate the location and

severity of structural damage presents significant challenges.

Across the various techniques for damage detection, vibration-based methods (VBMs) have
emerged as the most widely used and have gained significant attention in recent times. The principle
of these methods is that damage alters the properties of a structure, such as stiffness, flexibility,
damping, and mass, which consequently affect the dynamic parameters of the structure, such as
natural frequencies and mode shapes [8—11]. The alteration in modal and structural properties serves
as an indicator for detecting damage within the structure. The techniques based on these features are
categorized into several types, such as curvature/strain mode shape-based methods, mode shape-
based methods, natural frequency-based methods, and other techniques based on modal parameters
[12]. In recent years, extensive research on damage identification has been carried out using VBMs
across various structural elements and systems, including beams, trusses, plate structures, and

bridges [13—19].

The modal strain energy (MSE) based DI one of the most effective techniques among all the VBMs.
This method has been applied by many other researchers in order to identify the various kinds of
damages. Originally it was provided by Kim and Stubbs applied to beam-like structure and this has
been applied with success to detect and gauge the severity based on damage to steel girder bridges
using the first three modes of vibration [20]. Their conclusion showed that it was possible to use the
method of damage localization. In a similar study, Kim and Stubbs have suggested a better DI tech-
nique with unreliable constraints and assumptions resistant to current mathematical techniques of
computation. This enhanced method was evaluated on a continuously supported two span beam and
showed better localization of damages as well as assessing its severity. This enhanced method was
evaluated on a continuously supported two span beam and showed better localization of damages
as well as assessing its severity [21]. The results indicate that DI approach can be used in detecting
damages in bridge girders.

Eraky et al. [22] use the DI technique to detect damage in flexural structural elements and indicated
consistent reliable performance in the test work in terms of identifying all the simulated damage
cases. All these studies imply that DI method is more effective in the detection of damage in flexural
structures, which include bridge girders and decks. Consequently, it may be applied successfully to
concrete bridges as well as to steel bridges with the purposes of damage detection. Shih et al. [23]
evaluated the damage identification approach according to DI grounded on the mean square error
(MSE) and modal flexibility in beams and plates. According to their results, the DI approach better
offered plate structure accuracy. A generalized approach of detecting the damage in the plate struc-
ture based on pre and post damaged mode shapes was suggested by Cornwell et al. [14] that did not
necessitate mass normalization and therefore efficient to identify the damage in case of ambient
vibration. Their conclusion was that this method would be able to locate the damage that is related
to a 10 % percent reduction in the stiffness. Samali et al. [24] have demonstrated the modal flexi-
bility and DI approach on a timber bridge four-girder timber bridge and revealed that it could iden-
tify signs of severe and medium damages in either single or multiple damages cases, but not minor
damages.
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Cruz and Salgado assessed different vibration-based damage detection (VBDD) methods, including
the DI method, on a reinforced concrete and composite bridge for identifying damage [25]. All
methods successfully detected the damaged locations. Bonessio et al. [26] proposed a procedure for
damage detection in seismically isolated bridges, utilizing VBDD techniques, which demonstrated
consistent results in estimating severity and locating damage, with the DI method showing effec-
tiveness in detecting damage in the bridge decks. Farrar and Jauregui employed the MSE-based DI
method alongside four other VBDD methods to locate damage in a bridge featuring a steel girder
[27]. Their findings indicated that the DI method achieved higher accuracy in damage detection
when compared with conventional vibration-based techniques. Park et al. [28] assessed the corre-
spondence between damage locations predicted by the DI method and those observed via visual
inspection in a concrete box-girder bridge, demonstrating a strong correlation between observed and
predicted damage locations.

Jayasundara et al. [29] proposed a dual index criterion incorporating the DI method, for detecting
damage in structural components of deck-type arch bridges. Their approach demonstrated high ac-
curacy in detecting damage in these bridges. Zhou et al. [30] assessed the effectiveness of five dif-
ferent damage detection techniques on the deck slab of a simply supported bridge two-girder bridge,
focusing on detecting the location and magnitude of damage. Shih et al. [31] established a multi-
criteria method for damage identification in slab-on-girder bridges, incorporating changes in MSE-
based DI, modal flexibility, and natural frequencies, which successfully localized damage in all
cases for both the girder and deck. The DI technique has also been applied to suspension bridges for
damage detection. Talebinejad et al. [32] evaluated four different VBDD techniques, including the
DI method, on a cable-stayed bridge, demonstrating that the DI method produces promising results
compared to other VBDD techniques. Wickramasinghe et al. [33] proposed a DI method based on
mode shape components to locate damage in pre-tensioned cables of a suspension bridge, finding
that the DI method detected damage with reasonable accuracy. Despite the numerous benefits of
VBDD methods, a significant limitation remains, as most of these techniques are unable to quantify
the severity of the damage, although they are effective in locating and detecting damage.

Recently, the implementation of neural networks has garnered attention for structural damage iden-
tification. Artificial Neural Networks (ANN), which can learn the mapping between inputs and out-
puts from training data, can be employed to quantify damage severities [34-35]. Lee and Yun pre-
sented a method for detecting damage in steel girder bridges using the DI method combined with
back-propagation neural networks for locating and estimating damage severity, using mode shape
properties as input features [36]. Their outcomes indicated that the damage severities estimated were
subject to inaccuracies. Xu and Humar introduced a technique consisting of two stages that utilized
the MSE-based DI for damage localization and an ANN for estimating severity in a girder-modeled
bridge. In this approach, the DI was used as the input layer in the ANN and the results indicated that
the ANN had the capability of predicting the damage severity especially where the damage was not
minor [37].

Gu et al. [38] proposed a novel damage detection technique by incorporating an ANN to differentiate
variations in natural frequencies due to damage induced by temperature variations. Tan et al. [39]
introduced a two-stage procedure to localize damage in steel beams and estimate its severity.
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Initially, the MSE-based DI was used for damage localization, followed by employing ANN training
using DI as input parameters to predict damage magnitude. However, training the ANN required
multiple damage scenarios involving calculations for all possible damage locations in the steel beam;
for a complex structure such as a bridge, process becomes highly time-consuming. Mehrjoo et al.
[35] introduced a neural network using back-propagation that utilized mode shapes and natural fre-
guencies as input parameters to estimate the magnitude of damage in joints of a truss bridge. Their
technique demonstrated that the limitation of trained ANN is that it could only predict the severity
of single-damage scenarios. Bagchi et al. [40-41] used VBDD techniques and ANN on a three-
dimensional finite element (FE) bridge model and a two-dimensional simple girder model for dam-
age identification, using DI vectors as the input layer for the ANN. The accuracy of damage severity
prediction was found to be low for small damage. Dackerman et al. [42] combined the MSE-based
DI with principal component analysis and ANN to detect damage for single scenarios on a steel
beam, using the input layer as the DI. The severity of damage could only be predicted when there
was a single damage case. Hakim and Razak designed a methodology that input natural frequencies
into the mapping of the ANN to identify the severity of the damage where the prediction error was
6.8% [43].

This study presents an improved two-step method of detecting and estimating the extent of damage
in steel bridges. According to the literature study it is possible to say that MSE based DI method
has proven to be accurate in localizing damage. In the first stage, the damage index (B) will be
computed utilizing two initial bending modes. The indices that are acquired in the various modes
are then merged together with the help of a data fusion process to generate only one plot depicting
the trend between the damage index and the distance along the bridge girders, where peaks indicate
the likely damage locations. In the second stage, the DI values corresponding to the identified dam-
age locations are used to train an Artificial Neural Network (ANN), which is subsequently employed
to estimate the severity of damage for single-damage scenarios.

The Alamosa Canyon Bridge is utilized as a sample structure to examine the feasibility of the meth-
odology proposed, with a model and description of the bridge provided along with the validation of
the FE model. Subsequently, various damage scenarios are introduced to the sample structure by
reducing the stiffness of specific members, and application of these defined damage cases were
carried out on the validated FE model. The proposed damage detection technique is then employed
to detect the location and estimate the severity or quantify the severity of the damage, and the results
are interpreted in the conclusion section of this paper. The methodological framework of the current
research is illustrated in Figure 1.
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Figure 1: The current study methodological flow chart.

2. Materials and Methods

2.1 Bridge Description and Material Properties

In Sierra County, New Mexico, USA, the Alamosa Canyon Bridge shown in Figure 2, —con-

structed from reinforced concrete and steel and facilitating transportation across Alamosa Can-

yon—was selected as the target bridge for this study [44]. Preliminary experimental vibration tests

were conducted on the bridge to estimate its dynamic characteristics, such as natural frequencies

and mode shapes. A finite element (FE) model of the Alamosa Canyon Bridge, was utilized to

evaluate the damage detection capability.
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Figure 2 : FE model of Alamosa Canyon bridge.

The material properties used for the steel and concrete are presented in Table 1. This bridge consists
of seven spans, each connected through expansion joints and bridge piers, allowing for independent
structural analysis of each span. It features a concrete deck supported by six W30 x 116 steel beams,
with each span having a roadway width of 7.3 meters (24 feet) and a length of 15.2 meters (50 feet),
including expansion joints at both ends. Additionally, each span is equipped with four equally
spaced C12 x 25 channel-section cross braces connecting the adjacent beams.

Table 1: Material properties for steel and concrete.

. . Elastic Modulus
3
Details Mass Density (kg/m?) (GPa)
Steel 7850 200
Concrete 2400 21

Figure 3 : Bridge section view (up to damage part)
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2.2 Boundary Conditions, Meshing, and Interactions

The Alamosa Canyon Bridge was modeled using the FE modeling tool Abaqus (2020), and the
numerical model of the bridge is illustrated in Figure 2. The influence on eigenvalue results due to
boundary condition assumptions was examined, based on the fact that real-world boundary condi-
tions often deviate from idealized representations. To account for this, minor agitations were intro-
duced to the boundary constraints through a sensitivity analysis, such as variations in fixity and
restraint conditions. The resulting changes in the computed eigenfrequencies were observed to be
marginal, suggesting that the model exhibits satisfactory results despite boundary condition varia-
tions. As shown in Figure 3, the bridge's support conditions were modeled using pinned and roller-
type bearings, consistent with previous studies. Specifically, the left side of the FE model was rep-
resented as a pinned boundary condition, and the right side was modeled as a roller boundary con-

dition.

Pinned support

L

—

Roller Support

Figure 4: Support condition of the FE model bridge.

The FE model employed Continuum 3-dimensional 8-node (C3D8) solid brick elements to repre-
sent the bridge deck, girders, and cross braces. A mesh convergence analysis was also carried out
in order to have a reliable outcome of the simulation. This study involved the incremental refine-
ment of the finite element mesh and computing the corresponding eigenvalues at each refinement
level. The refinement process was continued until the relative difference in the primary natural
frequencies between successive mesh configurations fell below a threshold of 1%, indicating con-
vergence. The mesh size adopted for the final simulations was selected as the optimal balance be-
tween numerical accuracy and computational efficiency.

The meshed view of the bridge is represented in Figure 4, which illustrates the mesh of each ele-
ment. To optimize the model, a coarser mesh size was assigned to the deck elements, while a finer
mesh size was applied to the main girders and cross braces, in line with prior research recommen-
dations, which suggest maintaining the mesh size at approximately four to five times the thickness
of the respective member [45]. For interactions, the members of the FE model were interconnected

using tie connections to ensure an accurate simulation of the bridge's structural behavior.
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Figure 5: Meshed geometrical view of FE model bridge.

2.3 MSE-Based Damage Index

An approach based on determining the strain energy produced within damaged elements of beam
for a specific mode shape was developed by Kim and Stubbs [20]. This approach serves as a guide
for damage detection in structural elements. The mathematical equation for strain energy in a beam
is presented in Equation (1).

LEI (d?w
U= % () @

The mathematical expression includes key terms such as flexural rigidity (EI), beam span (L), cur-
2
vature( ‘;T‘f), while x indicates the span determined along the length, and w denotes the vertical

deformation of the damaged beam. The beta index is decided using the variations relative to the
MSE against the undamaged and damaged position of a structure. The damage index f;;for the ith
mode of the jth beam element is stated in the below Equation (2).

[10™: @] dxt 10" GO dx) [10%; ()P dx
[10"; @] dx+ ;10" G2 dx) fy [0 ()] dx

Bij= @)

The * indicates the damaged state, and @;" is the curvature based on mode shape, as per the Ex-

pression above, and can be written as follows:

B, = [0 ;)%+2©@" ;p*1[E@ ;)1
MDD XIS I CANIE

@)

To account for all the existing modes, a separate damage indicator g; is produced for N number
of modes as given in the below Equation (4), where Numjiand Denom;; denote the numerator and
denominator of g;; from Equation (3).

N
Zj=q Num;

Bj = (4)

Z?LIDenomﬁ
For damage-based detection, it is proposed to calculate the DI for each bending mode separately
using Equation (3) and then combine them using the absolute value method to incorporate both
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bending modes of the target FE bridge. Using the AV method, the normalized combined damage
indices are defined by Equation (5).

T2 1Bjl
Bav = ;4 ’
©)
The B; represents the DI calculated from the modal information of each of the bending modes,
and M denotes the number of calculated damage indices.

2.4 Artificial Neural Networks (ANN)

ANN were initially created to match the human brain's functionality, and are employed in this
methodology to assess severity based on damage. These types of networks have the ability to learn
as well and are specifically adaptive to complicated logical processes [43]. Every ANN consists of
three layers; an input and an output layer and multiple hidden layers. The interaction between the
input and output layer may be linear or nonlinear which depends on a set of constraints such as bias
vectors and weight matrices The multilayer perceptron (MLP), usually implemented as a back-
propagation neural network (BPNN), is one of the most used ANN algorithms trained using super-
vised learning in the field of structural health monitoring (SHM). This study utilizes the BPNN
algorithm to compute weight matrices required to develop the anticipated pattern of input parame-
ters versus output parameters. Back-propagation is the method of passing data in the forward di-
rection whereas the error propagation is carried out backwards in the network until an optimal point
is reached. The performance index is the least mean square error that the BP algorithm utilizes and
that is the difference between what the network output and the output parameters. In this method-
ology, the Levenberg-Marquardt BP method, available in MATLAB software, was used to establish
the relationship between MSE-based DI and severity-based damage as output parameters.

The architecture of ANN model is shown in Figure 5, designed for a regression task to predict
"Severity" based on the 'Beta’ value. LSTMs are typically designed for time-series data, they were
used here to model complex non-linear relationships in the static Beta Severity mapping, even
without explicit temporal dependencies. This approach utilized the LSTM’s ability to capture intri-
cate patterns and feature interactions beyond what simpler models might detect. Although the da-
taset comprises static DI values, the use of LSTM was a deliberate architectural choice to explore
its pattern recognition strengths. The input layer has a shape of (1, 1), as each sample consists of
one-time step and one feature, the 'Beta' value. The first layer is an LSTM layer with 64 neurons
(units), and L2 regularization (0.001) is applied to both kernel and recurrent weights. The LSTM
layer uses tanh as the activation function for the outputs and sigmoid for the gates. The second layer
is a Dense (fully connected) layer with 32 neurons, applying L2 regularization (0.001) to the
weights and using a linear activation function. The output layer consists of one neuron, with a linear
activation function, appropriate for the regression task. For training, the model uses the Adam op-
timizer with a learning rate of 0.01. The loss function is Mean Squared Error (MSE), and the per-
formance is monitored using the Mean Absolute Error (MAE) metric. The model is trained for 300
epochs with a batch size of 32, and 20% of the training data is used for validation. L2 regularization
is applied throughout the model to reduce overfitting, and the architecture is optimized for accurate

regression predictions.
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2.5 Validation of FE Model

Figure 6: Neural Network Architecture

The forced vibration test technique was utilized to extract the modal parameters and validate the

finite element (FE) model by comparing the frequencies derived from the undamaged structure

with the experimental resonant frequencies. For this validation, as presented in Table 2, resonant

frequencies calculated via FE analysis were compared with those obtained through experimental

testing on the actual bridge.

Table 2: Comparison of natural frequencies of the bridge from experiment and FE analysis.

Average per-

Mode Experiment [44] FE model centage differ-
ence

1% 7.81 7.18

2nd 8.51 9.36

3rd 12.1 15.85

4t 20.80 21.04 4

5t 24.00 24.77

6t 26.60 25.32

The forced vibration test technique was utilized to extract the modal parameters and validate the

finite element (FE) model by comparing the frequencies derived from the undamaged structure

with the experimental resonant frequencies. For this validation, as presented in Table 2, resonant

frequencies calculated via FE analysis were compared with those obtained through experimental

testing on the actual bridge.
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Figure 7: First two bending modes of the undamaged bridge.

2.6 Damage Detection and Severity Prediction Approach

This study focuses on identifying damage in the Alamosa Canyon Bridge using an FE model and
various damage scenarios, followed by predicting the severity of the damage. The validated FE
model underwent a damage identification process to demonstrate the effectiveness of the proposed
damage detection technique. The FE model featured a single span supported by six steel beams,
each divided into nine segments of 30 mm length along the span, representing potential damage
locations. Damage was simulated by a 10% reduction in elastic modulus for a specific damage
scenario, and a frequency analysis of the numerical model was conducted to extract the first two
bending mode shapes of the Alamosa Canyon Bridge. The central difference technique was then
applied to these mode shapes to compute the damage index at specific damage locations, utilizing
Equations (3) and (4). The absolute value (AV) method was used to combine these indices as de-
scribed in Equation (5), and the computed absolute damage indicators were plotted along the span
of the bridge to visually identify the damage location.

As stated in Table 3, various damage severities for all damage cases were initially simulated in the
FE model at the damage locations to gather learning data for the ANN. After simulating multiple
damage scenarios on the FE model bridge, the next phase involved training an ANN. To reduce
computational costs, an efficient method was proposed to interpolate damage indices instead of
calculating them for all severities. The ANN was trained using these damage indices as input pa-
rameters. The damage indices were calculated for four different severities (10%, 15%, 20%, and
25%), and interpolation for the remaining damage magnitudes was carried out using the cubic

spline method in Microsoft Excel.
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Table 3: Damage scenarios simulated on the FE model bridge.

Scenario Location Damage Severities (%)
Case 1 Center 10-15-20-25
Case 2 Left middle third 10-15-20-25
Case 3 Right middle third 10-15-20-25

The proposed methodology for damage detection and severity prediction in the Alamosa Canyon
Bridge follows a systematic sequence. Initially, a finite element (FE) model was developed using
target bridge, incorporating accurate geometric and material properties of the bridge. A mesh con-
vergence study was conducted to ensure computational reliability. Modal analysis was then carried
out to extract the first two bending mode shapes, which were used to compute modal strain energy-
based DI through the absolute value method. Various damage scenarios were simulated by reducing
the elastic modulus, and the corresponding DIs were calculated. To estimate damage severity, a
supervised artificial neural network (ANN) model—incorporating a Long Short-Term Memory
(LSTM) architecture—was trained using the computed DI. Additional severity levels were inter-
polated using the cubic spline method to enhance the training dataset. The FE model was validated
against experimental vibration data to ensure reliability of the simulation results.

3. Results

3.1 Damage Location Detection

The performance of the method in detecting specific damage in the first stage is demonstrated by
its application to a damaged case. Firstly, using the first two bending modes, the damage location
is determined using the MSE-based damage indicator for each damage scenario. The first two bend-
ing modes of the bridge are used to calculate the f,,, and it is plotted across the length of the target
bridge. The expected indication of damage locations comes from observing the DI peaks in these
plots. Figures 6 to 8 depict bar charts displaying the absolute damage index plotted against the
distance along the bridge for each scenario of damage with 10% severity. Figures 9 to 11 depict
charts displaying the absolute damage index plotted against the distance along the bridge for all
damage cases described in Table 3. These charts further support the accuracy of the damage detec-
tion procedure, as they successfully pinpoint the damage at the actual locations. These damage
indices were calculated using data obtained from the first two bending modes.
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The above figures demonstrate the accuracy of the MSE-based DI in identifying damage for various
scenarios at different locations. The use of the MSE-based DI is validated through its ability to
detect and locate structural damage accurately across multiple scenarios, as depicted in the figures.
Figure 6 illustrates damage occurring at the center of the bridge, with a peak observed precisely at
this central point. In Figure 6, the damage detection results highlight an evident peak at the center
of the bridge, indicating the exact location of the damage. Similarly, Figures 7 and 8 accurately
pinpoint damage locations, with peaks concentrated in the right-middle third and left-middle third
regions for each damage scenario. Figures 7 and 8 further validate the effectiveness of the MSE-
based DI by showing distinct peaks in the right-middle third and left-middle third sections of the
bridge. These peaks align with the predefined damage scenarios, demonstrating the method's capa-
bility to locate damage with precision in different regions of the bridge structure.
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Figure 13: Damage index vs Distance along the bridge for case 3.

The charts presented in Figures 9 to 11 illustrate the relationship between the DI and span length
for various damage severities, ranging from 10% to 25%. In Figure 9, which represents damage
scenario 1, damage is consistently detected at the center of the span for all severities. As the severity
of the damage increases, the identification becomes more pronounced, with the peaks indicating
damage becoming more prominent and higher compared to those of lower severities. Similarly,
Figures 10 and 11 accurately pinpoint the damage locations in the right-middle third and left-middle
third regions of the bridge, respectively. The charts show that as the severity of the damage in-
creases, the absolute values of the damage index also increase, enhancing the visibility and accu-
racy of the damage detection. Overall, these results demonstrate high accuracy in determining the
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damage locations for all scenarios and severities, validating the effectiveness of the proposed dam-
age detection method. This consistent pattern across different figures underscores the reliability of
the MSE-based DI employed in accurately identifying and assessing damage in the bridge structure.

3.2 Prediction of damage severity

The proposed methodology was further employed to assess the efficacy of mode shapes in estimat-
ing damage severity. As observed in the preceding analysis, the damage detection methodology
accurately identified damage. To investigate the severity at the damage location, an ANN was
trained with the data sets created using the damage scenarios stated in Table 3. Since ANN requires
more learning data, the data sets were enhanced by applying cubic spline interpolation to the data
extracted from the FE model. To evaluate the accuracy of the cubic spline interpolation method,
Table 4 and Figure 12 show the actual and interpolated data for the existing four severities using
cubic spline interpolation in Microsoft Excel, along with the percentage difference between the
extracted and interpolated data. The beta vector for four different damage severities was initially
assessed at the location of damage 1, and subsequently, the damage indices for 15% and 20% re-
ductions in stiffness were interpolated using the technique of cubic spline.

Table 4 : Comparison of computed and interpolated damage index.

Damage Severity Damage index Interpolated damage index Percentage Difference (%)
10 1.010892557 1.010892557
15 1.011392557 1.011892557 0.000494124
20 1.012192557 1.012892557 0.00069109
25 1.013892557 1.013892557
1.015
y 1.014
5
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Figure 14: Comparison of computed and interpolated damage index.

From Table 4, the difference between the computed and interpolated DI is negligible, as the per-
centage difference is less than 1%. For severities ranging from 10% to 25%, interpolation was
employed to generate the necessary damage index values, since training an ANN requires a sub-
stantial amount of data. Multiple datasets were generated to train the model using the neural net-
work fitting tool in MATLAB. The DI was used as the input parameter for model training, while
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severity served as the output parameter. The dataset was divided into separate subsets for training,
validation, and testing, as outlined in Table 5.

Table 5 : Datasets division for training, validation, and testing.

Data Samples
Training 105
Validation 23
Testing 23

The training process produced regression results as illustrated in Figure 12, with an average coef-
ficient of determination (R-squared) of 0.998. This high correlation between the predicted severity
values and the actual severity values highlights the model's accuracy in capturing the underlying
relationship between the input (DI) and the output (severity) variables.
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Figure 15: Regression plot of different data sets of ANN.

The use of distinct training, validation, and test datasets facilitated a comprehensive assessment of
the model's performance across various data subsets, ensuring the reliability of the developed neural
network model's predictive capabilities. The obtained regression results validate the effectiveness
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of the training approach, demonstrating the model's ability to accurately predict damage severity
based on the provided input parameters.

4. Discussion

This study successfully developed and validated a novel two-stage process of identifying damage
and quantifying that damage in terms of severity in the single span steel bridges, which was used
on the FE model of the Alamosa Canyon Bridge. By employing the MSE-based DI technique ini-
tially for locating the damage, the ANN utilized this damage to quantify it in terms of severity. The
proposed approach shows high precision in identifying damage locations for a different range of
damage scenarios and severities. The suggested method demonstrates good accuracy in locating
damage positions for a different range of damage scenarios and severities. The results shown by
the proposed methodology also ensure that the applicability of this study in bridge health monitor-
ing and contribute significantly to structural health monitoring, especially enhancing the accuracy,

localization of damage, and its quantification in terms of severity in steel bridge structures.

The key findings of this research are as follows:

1. The MSE-based DI precisely localized the damage on the FE model of the Alamosa Can-
yon Bridge, with results showing the damage at specific locations of bridge segments for
all scenarios.

2. Interpolated damage indices for severities ranging from 10% to 25% showed a small error
of less than 1%, confirming the effectiveness of the interpolation used to extend the training
dataset.

3. ANNs effectively quantify the severity-based damage with an average R-squared value of
0.998, showing a high correlation between actual severity and predicted values.

4. The proposed method is effective for structural health monitoring, promising more efficient
and cost-effective bridge maintenance.

This methodology is purely based on simulation results without performing any practical or real-
time data collection work on the target bridge. To advance the findings of this study, future research
should focus on validating the proposed method across a range of bridge configurations and condi-
tions, including varying deck configurations, material properties, and boundary conditions. Inte-
gration of real-time sensor data into the monitoring system should be explored to enhance detection
accuracy and system responsiveness. Collaboration with bridge maintenance authorities and stake-
holders is essential to facilitate the adoption and practical implementation of the system in real-
world bridge management scenarios. Additionally, continuous refinement of the severity-based
model is necessary to improve its predictive capabilities and adaptability to diverse bridge condi-
tions and environments. Furthermore, due to the limited scope of the current study, confidence
intervals or error bars were not included in the regression plot (Fig. 15); however, their inclusion
can be considered in future work. Nonetheless, this is recognized as a valuable addition and is
recommended for consideration in future work." Moreover, consideration should be given to scal-
ing the implementation of this technology across a broader network of bridges to optimize infra-
structure maintenance practices and enhance overall public safety. Physical testing in real-world
scenarios is also needed to validate the system's performance and reliability.
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5. Conclusions

The findings of this study differ from previous research by predicting damage severity using the
MSE-based DI in the case of multi-damage scenarios for single-span steel bridges. According to
past studies, the MSE-based DI effectively identifies damage locations but has contributed little to
estimating the severity of the damage based on multi-damage scenarios for single-span steel bridges.
This study addresses this gap by focusing on estimating the damage severity at identified locations,
thereby presenting a novel contribution that effectively estimates damage severity with reduced
computational effort. The comparative analysis demonstrates that the proposed method achieves
desirable accuracy in both damage identification and severity prediction, offering a more efficient
alternative to previously used methods.

However, there are a number of limitations; these include the fact that performance may vary in
different ways on different bridges because of bridge-specific factors like variations in material
values, boundary conditions and deck arrangements. In addition, this research was conducted on a
simulation based-analysis and requires a wide-reaching field testing for its practical applicability.

Furthermore, the results of the conducted research on the suggested approach to damage detection
induce the incorporation of the specified approach into the structural health monitoring procedures.
The effectiveness of this methodology in the identification and forecast of damage of severity based
using limited resources gives more time and cost-effective maintenance measures of bridges. This
work holds a potentially positive outcome of incorporating the suggested method in structural test-
ing-related guidelines and the codes of practice which could serve as a usable instrument in en-
hancing the stability and resistance of the steel bridge structure infrastructure.
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Abbreviations

The following abbreviations are used in this manuscript:

SHM Structural health monitoring

ANN Artificial neural networks

MSE Modal strain energy

DI Damage Index

VBDD Vibration-based damage detection

FE Finite Element
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BPNN Back-propagation neural network
NLP Multilayer perceptron

AV Absolute value

MAE Mean Absolute Error

LSTM Long Short-Term Memory

MSE Mean square error

VBM Vibration based method
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