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Abstract 

Structural health monitoring (SHM) is necessary to ensure durability and safety of steel bridges that 

are regarded as important elements of modern infrastructure. The structural integrity of bridges is 

very essential in order to keep them running and free of danger to the public. There has been a lot 

of research done on the prediction of damage locations in multi-span steel bridges, while relatively 

limited attention has been given to the identification and quantification of damage based on the level 

of severity in single-span steel bridges. This study provides an innovative method that integrates 

modal strain energy-based damage indices and data-driven artificial neural networks (ANNs) to 

provide damage localization and quantification in the form of damage severity in single-span steel 

bridges. The first two bending mode shapes obtained in the validated FE model were used to calcu-

late the damage indices which was then combine using the absolute value method in determining 

the localization of damage in different damage scenarios created on the FE model. To predict the 

severity using these damage indices, ANNs were used with a large dataset created using cubic spline 

interpolations and FE simulations. This methodology reduces computational effort through a 

streamlined method for structural health monitoring while maintaining high accuracy in severity 

prediction and damage detection, enhancing infrastructure safety and maintenance.                                                                  

Keywords: Finite Element Modeling; Modal Strain Energy-Based Damage Index; Damage Severity; 

Bending Modes; Artificial Neural Networks; Damage Detection. 

 

1. Introduction 

Bridges are a significant component of many infrastructures’ development, and thus they are sus-

ceptible to easy destruction caused by alternate load characteristics, via wear and tear, earth tremors 

and impacts of weather conditions [1–7]. Damage can be observed in different bridge components, 

potentially leading to weakening and collapse of the structure. The safety of a bridge diminishes 

when defects in the structure become large, which means chances of a component-level or overall 

structural failures. Therefore, obtaining health of infrastructure, especially bridges, is become es-

sential. Traditionally, bridge condition assessments have relied primarily on visual inspections, a 

nondestructive evaluation technique that is limited to detecting visible damage [5]. To prevent struc-

tural failures, structural health monitoring using smart techniques is necessary to assess structural 
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damage at early stages However, utilizing recorded data to accurately estimate the location and 

severity of structural damage presents significant challenges. 

 

Across the various techniques for damage detection, vibration-based methods (VBMs) have 

emerged as the most widely used and have gained significant attention in recent times. The principle 

of these methods is that damage alters the properties of a structure, such as stiffness, flexibility, 

damping, and mass, which consequently affect the dynamic parameters of the structure, such as 

natural frequencies and mode shapes [8–11]. The alteration in modal and structural properties serves 

as an indicator for detecting damage within the structure. The techniques based on these features are 

categorized into several types, such as curvature/strain mode shape-based methods, mode shape-

based methods, natural frequency-based methods, and other techniques based on modal parameters 

[12]. In recent years, extensive research on damage identification has been carried out using VBMs 

across various structural elements and systems, including beams, trusses, plate structures, and 

bridges [13–19]. 

The modal strain energy (MSE) based DI one of the most effective techniques among all the VBMs. 

This method has been applied by many other researchers in order to identify the various kinds of 

damages. Originally it was provided by Kim and Stubbs applied to beam-like structure and this has 

been applied with success to detect and gauge the severity based on damage to steel girder bridges 

using the first three modes of vibration [20]. Their conclusion showed that it was possible to use the 

method of damage localization. In a similar study, Kim and Stubbs have suggested a better DI tech-

nique with unreliable constraints and assumptions resistant to current mathematical techniques of 

computation. This enhanced method was evaluated on a continuously supported two span beam and 

showed better localization of damages as well as assessing its severity. This enhanced method was 

evaluated on a continuously supported two span beam and showed better localization of damages 

as well as assessing its severity [21]. The results indicate that DI approach can be used in detecting 

damages in bridge girders. 

 

Eraky et al. [22] use the DI technique to detect damage in flexural structural elements and indicated 

consistent reliable performance in the test work in terms of identifying all the simulated damage 

cases. All these studies imply that DI method is more effective in the detection of damage in flexural 

structures, which include bridge girders and decks. Consequently, it may be applied successfully to 

concrete bridges as well as to steel bridges with the purposes of damage detection. Shih et al. [23] 

evaluated the damage identification approach according to DI grounded on the mean square error 

(MSE) and modal flexibility in beams and plates. According to their results, the DI approach better 

offered plate structure accuracy. A generalized approach of detecting the damage in the plate struc-

ture based on pre and post damaged mode shapes was suggested by Cornwell et al. [14] that did not 

necessitate mass normalization and therefore efficient to identify the damage in case of ambient 

vibration. Their conclusion was that this method would be able to locate the damage that is related 

to a 10 % percent reduction in the stiffness. Samali et al. [24] have demonstrated the modal flexi-

bility and DI approach on a timber bridge four-girder timber bridge and revealed that it could iden-

tify signs of severe and medium damages in either single or multiple damages cases, but not minor 

damages. 
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Cruz and Salgado assessed different vibration-based damage detection (VBDD) methods, including 

the DI method, on a reinforced concrete and composite bridge for identifying damage [25]. All 

methods successfully detected the damaged locations. Bonessio et al. [26] proposed a procedure for 

damage detection in seismically isolated bridges, utilizing VBDD techniques, which demonstrated 

consistent results in estimating severity and locating damage, with the DI method showing effec-

tiveness in detecting damage in the bridge decks. Farrar and Jauregui employed the MSE-based DI 

method alongside four other VBDD methods to locate damage in a bridge featuring a steel girder 

[27]. Their findings indicated that the DI method achieved higher accuracy in damage detection 

when compared with conventional vibration-based techniques. Park et al. [28] assessed the corre-

spondence between damage locations predicted by the DI method and those observed via visual 

inspection in a concrete box-girder bridge, demonstrating a strong correlation between observed and 

predicted damage locations. 

Jayasundara et al. [29] proposed a dual index criterion incorporating the DI method, for detecting 

damage in structural components of deck-type arch bridges. Their approach demonstrated high ac-

curacy in detecting damage in these bridges. Zhou et al. [30] assessed the effectiveness of five dif-

ferent damage detection techniques on the deck slab of a simply supported bridge two-girder bridge, 

focusing on detecting the location and magnitude of damage. Shih et al. [31] established a multi-

criteria method for damage identification in slab-on-girder bridges, incorporating changes in MSE-

based DI, modal flexibility, and natural frequencies, which successfully localized damage in all 

cases for both the girder and deck. The DI technique has also been applied to suspension bridges for 

damage detection. Talebinejad et al. [32] evaluated four different VBDD techniques, including the 

DI method, on a cable-stayed bridge, demonstrating that the DI method produces promising results 

compared to other VBDD techniques. Wickramasinghe et al. [33] proposed a DI method based on 

mode shape components to locate damage in pre-tensioned cables of a suspension bridge, finding 

that the DI method detected damage with reasonable accuracy. Despite the numerous benefits of 

VBDD methods, a significant limitation remains, as most of these techniques are unable to quantify 

the severity of the damage, although they are effective in locating and detecting damage. 

Recently, the implementation of neural networks has garnered attention for structural damage iden-

tification. Artificial Neural Networks (ANN), which can learn the mapping between inputs and out-

puts from training data, can be employed to quantify damage severities [34-35]. Lee and Yun pre-

sented a method for detecting damage in steel girder bridges using the DI method combined with 

back-propagation neural networks for locating and estimating damage severity, using mode shape 

properties as input features [36]. Their outcomes indicated that the damage severities estimated were 

subject to inaccuracies. Xu and Humar introduced a technique consisting of two stages that utilized 

the MSE-based DI for damage localization and an ANN for estimating severity in a girder-modeled 

bridge. In this approach, the DI was used as the input layer in the ANN and the results indicated that 

the ANN had the capability of predicting the damage severity especially where the damage was not 

minor [37]. 

 

Gu et al. [38] proposed a novel damage detection technique by incorporating an ANN to differentiate 

variations in natural frequencies due to damage induced by temperature variations. Tan et al. [39] 

introduced a two-stage procedure to localize damage in steel beams and estimate its severity. 
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Initially, the MSE-based DI was used for damage localization, followed by employing ANN training 

using DI as input parameters to predict damage magnitude. However, training the ANN required 

multiple damage scenarios involving calculations for all possible damage locations in the steel beam; 

for a complex structure such as a bridge, process becomes highly time-consuming. Mehrjoo et al. 

[35] introduced a neural network using back-propagation that utilized mode shapes and natural fre-

quencies as input parameters to estimate the magnitude of damage in joints of a truss bridge. Their 

technique demonstrated that the limitation of trained ANN is that it could only predict the severity 

of single-damage scenarios. Bagchi et al. [40–41] used VBDD techniques and ANN on a three-

dimensional finite element (FE) bridge model and a two-dimensional simple girder model for dam-

age identification, using DI vectors as the input layer for the ANN. The accuracy of damage severity 

prediction was found to be low for small damage. Dackerman et al. [42] combined the MSE-based 

DI with principal component analysis and ANN to detect damage for single scenarios on a steel 

beam, using the input layer as the DI. The severity of damage could only be predicted when there 

was a single damage case. Hakim and Razak designed a methodology that input natural frequencies 

into the mapping of the ANN to identify the severity of the damage where the prediction error was 

6.8% [43]. 

This study presents an improved two-step method of detecting and estimating the extent of damage 

in steel bridges. According to the literature study it is possible to say that MSE based DI method 

has proven to be accurate in localizing damage. In the first stage, the damage index (β) will be 

computed utilizing two initial bending modes. The indices that are acquired in the various modes 

are then merged together with the help of a data fusion process to generate only one plot depicting 

the trend between the damage index and the distance along the bridge girders, where peaks indicate 

the likely damage locations. In the second stage, the DI values corresponding to the identified dam-

age locations are used to train an Artificial Neural Network (ANN), which is subsequently employed 

to estimate the severity of damage for single-damage scenarios. 

The Alamosa Canyon Bridge is utilized as a sample structure to examine the feasibility of the meth-

odology proposed, with a model and description of the bridge provided along with the validation of 

the FE model. Subsequently, various damage scenarios are introduced to the sample structure by 

reducing the stiffness of specific members, and application of these defined damage cases were 

carried out on the validated FE model. The proposed damage detection technique is then employed 

to detect the location and estimate the severity or quantify the severity of the damage, and the results 

are interpreted in the conclusion section of this paper. The methodological framework of the current 

research is illustrated in Figure 1. 
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Figure 1: The current study methodological flow chart. 

 

 

2. Materials and Methods 

2.1 Bridge Description and Material Properties 

In Sierra County, New Mexico, USA, the Alamosa Canyon Bridge shown in Figure 2, —con-

structed from reinforced concrete and steel and facilitating transportation across Alamosa Can-

yon—was selected as the target bridge for this study [44]. Preliminary experimental vibration tests 

were conducted on the bridge to estimate its dynamic characteristics, such as natural frequencies 

and mode shapes. A finite element (FE) model of the Alamosa Canyon Bridge, was utilized to 

evaluate the damage detection capability. 
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Figure 2 : FE model of Alamosa Canyon bridge. 

The material properties used for the steel and concrete are presented in Table 1. This bridge consists 

of seven spans, each connected through expansion joints and bridge piers, allowing for independent 

structural analysis of each span. It features a concrete deck supported by six W30 × 116 steel beams, 

with each span having a roadway width of 7.3 meters (24 feet) and a length of 15.2 meters (50 feet), 

including expansion joints at both ends. Additionally, each span is equipped with four equally 

spaced C12 × 25 channel-section cross braces connecting the adjacent beams. 

 

Table 1: Material properties for steel and concrete. 

 

 

 
 

 

 

 

Figure 3 : Bridge section view (up to damage part) 

Details Mass Density (kg/m3) 
Elastic Modulus 

(GPa) 

Steel 7850 200 

Concrete 2400 21 
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2.2 Boundary Conditions, Meshing, and Interactions 

The Alamosa Canyon Bridge was modeled using the FE modeling tool Abaqus (2020), and the 

numerical model of the bridge is illustrated in Figure 2. The influence on eigenvalue results due to 

boundary condition assumptions was examined, based on the fact that real-world boundary condi-

tions often deviate from idealized representations. To account for this, minor agitations were intro-

duced to the boundary constraints through a sensitivity analysis, such as variations in fixity and 

restraint conditions. The resulting changes in the computed eigenfrequencies were observed to be 

marginal, suggesting that the model exhibits satisfactory results despite boundary condition varia-

tions. As shown in Figure 3, the bridge's support conditions were modeled using pinned and roller-

type bearings, consistent with previous studies. Specifically, the left side of the FE model was rep-

resented as a pinned boundary condition, and the right side was modeled as a roller boundary con-

dition. 

 

 

Figure 4: Support condition of the FE model bridge. 

The FE model employed Continuum 3-dimensional 8-node (C3D8) solid brick elements to repre-

sent the bridge deck, girders, and cross braces. A mesh convergence analysis was also carried out 

in order to have a reliable outcome of the simulation. This study involved the incremental refine-

ment of the finite element mesh and computing the corresponding eigenvalues at each refinement 

level. The refinement process was continued until the relative difference in the primary natural 

frequencies between successive mesh configurations fell below a threshold of 1%, indicating con-

vergence. The mesh size adopted for the final simulations was selected as the optimal balance be-

tween numerical accuracy and computational efficiency. 

The meshed view of the bridge is represented in Figure 4, which illustrates the mesh of each ele-

ment. To optimize the model, a coarser mesh size was assigned to the deck elements, while a finer 

mesh size was applied to the main girders and cross braces, in line with prior research recommen-

dations, which suggest maintaining the mesh size at approximately four to five times the thickness 

of the respective member [45]. For interactions, the members of the FE model were interconnected 

using tie connections to ensure an accurate simulation of the bridge's structural behavior. 
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Figure 5: Meshed geometrical view of FE model bridge. 

2.3 MSE-Based Damage Index 

An approach based on determining the strain energy produced within damaged elements of beam 

for a specific mode shape was developed by Kim and Stubbs [20]. This approach serves as a guide 

for damage detection in structural elements. The mathematical equation for strain energy in a beam 

is presented in Equation (1). 

U =  ∫
𝐸𝐼

2

𝐿

0
(

d2𝑤

d𝑥2 ) d𝑥          (1) 

 

The mathematical expression includes key terms such as flexural rigidity (EI), beam span (L), cur-

vature( 
𝑑2𝑤

𝑑𝑥2 ), while x indicates the span determined along the length, and w denotes the vertical 

deformation of the damaged beam. The beta index is decided using the variations relative to the 

MSE against the undamaged and damaged position of a structure. The damage index 𝛽𝑖𝑗for the ith 

mode of the jth beam element is stated in the below Equation (2). 
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        (2) 

The * indicates the damaged state, and ∅𝑖˝ is the curvature based on mode shape, as per the Ex-

pression above, and can be written as follows: 

β𝑖𝑗 =  
[(∅"∗

𝑗𝑖)2+ ∑(∅"∗
𝑗𝑖)2] [∑(∅"

𝑗𝑖)]2

[(∅"
𝑗𝑖)2+ ∑(∅"

𝑗𝑖)2] [∑(∅"∗
𝑗𝑖)]2          (3) 

To account for all the existing modes, a separate damage indicator 𝛽𝑗 is produced for N number 

of modes as given in the below Equation (4), where Numji and Denomji denote the numerator and 

denominator of 𝛽𝑖𝑗 from Equation (3). 

β𝑗 =  
∑ Num𝑗𝑖

𝑁
𝑖=1

∑ Denom𝑗𝑖
𝑁
𝑖=1

          (4) 

For damage-based detection, it is proposed to calculate the DI for each bending mode separately 

using Equation (3) and then combine them using the absolute value method to incorporate both 
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bending modes of the target FE bridge. Using the AV method, the normalized combined damage 

indices are defined by Equation (5). 

𝛽𝐴𝑉 =  
∑ |𝛽𝑗|𝑚

𝑖=1

𝑀
                                                                                                               

(5) 

The 𝛽𝑗 represents the DI calculated from the modal information of each of the bending modes, 

and M denotes the number of calculated damage indices. 

2.4 Artificial Neural Networks (ANN) 

ANN were initially created to match the human brain's functionality, and are employed in this 

methodology to assess severity based on damage. These types of networks have the ability to learn 

as well and are specifically adaptive to complicated logical processes [43]. Every ANN consists of 

three layers; an input and an output layer and multiple hidden layers. The interaction between the 

input and output layer may be linear or nonlinear which depends on a set of constraints such as bias 

vectors and weight matrices The multilayer perceptron (MLP), usually implemented as a back-

propagation neural network (BPNN), is one of the most used ANN algorithms trained using super-

vised learning in the field of structural health monitoring (SHM). This study utilizes the BPNN 

algorithm to compute weight matrices required to develop the anticipated pattern of input parame-

ters versus output parameters. Back-propagation is the method of passing data in the forward di-

rection whereas the error propagation is carried out backwards in the network until an optimal point 

is reached. The performance index is the least mean square error that the BP algorithm utilizes and 

that is the difference between what the network output and the output parameters. In this method-

ology, the Levenberg-Marquardt BP method, available in MATLAB software, was used to establish 

the relationship between MSE-based DI and severity-based damage as output parameters.  

 

The architecture of ANN model is shown in Figure 5, designed for a regression task to predict 

"Severity" based on the 'Beta' value. LSTMs are typically designed for time-series data, they were 

used here to model complex non-linear relationships in the static Beta Severity mapping, even 

without explicit temporal dependencies. This approach utilized the LSTM’s ability to capture intri-

cate patterns and feature interactions beyond what simpler models might detect. Although the da-

taset comprises static DI values, the use of LSTM was a deliberate architectural choice to explore 

its pattern recognition strengths. The input layer has a shape of (1, 1), as each sample consists of 

one-time step and one feature, the 'Beta' value. The first layer is an LSTM layer with 64 neurons 

(units), and L2 regularization (0.001) is applied to both kernel and recurrent weights. The LSTM 

layer uses tanh as the activation function for the outputs and sigmoid for the gates. The second layer 

is a Dense (fully connected) layer with 32 neurons, applying L2 regularization (0.001) to the 

weights and using a linear activation function. The output layer consists of one neuron, with a linear 

activation function, appropriate for the regression task. For training, the model uses the Adam op-

timizer with a learning rate of 0.01. The loss function is Mean Squared Error (MSE), and the per-

formance is monitored using the Mean Absolute Error (MAE) metric. The model is trained for 300 

epochs with a batch size of 32, and 20% of the training data is used for validation. L2 regularization 

is applied throughout the model to reduce overfitting, and the architecture is optimized for accurate 

regression predictions.  
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Figure 6: Neural Network Architecture 

2.5 Validation of FE Model 

The forced vibration test technique was utilized to extract the modal parameters and validate the 

finite element (FE) model by comparing the frequencies derived from the undamaged structure 

with the experimental resonant frequencies. For this validation, as presented in Table 2, resonant 

frequencies calculated via FE analysis were compared with those obtained through experimental 

testing on the actual bridge. 

 

Table 2: Comparison of natural frequencies of the bridge from experiment and FE analysis. 

Mode Experiment [44] FE model 

Average per-

centage differ-

ence 

1st 7.81 7.18 

8.43 

2nd 8.51 9.36 

3rd 12.1 15.85 

4th 20.80 21.04 

5th 24.00 24.77 

6th 26.60 25.32 

 

The forced vibration test technique was utilized to extract the modal parameters and validate the 

finite element (FE) model by comparing the frequencies derived from the undamaged structure 

with the experimental resonant frequencies. For this validation, as presented in Table 2, resonant 

frequencies calculated via FE analysis were compared with those obtained through experimental 

testing on the actual bridge. 
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Figure 7: First two bending modes of the undamaged bridge. 

2.6 Damage Detection and Severity Prediction Approach 

This study focuses on identifying damage in the Alamosa Canyon Bridge using an FE model and 

various damage scenarios, followed by predicting the severity of the damage. The validated FE 

model underwent a damage identification process to demonstrate the effectiveness of the proposed 

damage detection technique. The FE model featured a single span supported by six steel beams, 

each divided into nine segments of 30 mm length along the span, representing potential damage 

locations. Damage was simulated by a 10% reduction in elastic modulus for a specific damage 

scenario, and a frequency analysis of the numerical model was conducted to extract the first two 

bending mode shapes of the Alamosa Canyon Bridge. The central difference technique was then 

applied to these mode shapes to compute the damage index at specific damage locations, utilizing 

Equations (3) and (4). The absolute value (AV) method was used to combine these indices as de-

scribed in Equation (5), and the computed absolute damage indicators were plotted along the span 

of the bridge to visually identify the damage location. 

As stated in Table 3, various damage severities for all damage cases were initially simulated in the 

FE model at the damage locations to gather learning data for the ANN. After simulating multiple 

damage scenarios on the FE model bridge, the next phase involved training an ANN. To reduce 

computational costs, an efficient method was proposed to interpolate damage indices instead of 

calculating them for all severities. The ANN was trained using these damage indices as input pa-

rameters. The damage indices were calculated for four different severities (10%, 15%, 20%, and 

25%), and interpolation for the remaining damage magnitudes was carried out using the cubic 

spline method in Microsoft Excel. 
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Table 3: Damage scenarios simulated on the FE model bridge. 

Scenario Location Damage Severities (%) 

Case 1 Center 10 - 15 – 20 - 25 

Case 2 Left middle third 10 - 15 – 20 - 25 

Case 3 Right middle third 10 - 15 – 20 - 25 

The proposed methodology for damage detection and severity prediction in the Alamosa Canyon 

Bridge follows a systematic sequence. Initially, a finite element (FE) model was developed using 

target bridge, incorporating accurate geometric and material properties of the bridge. A mesh con-

vergence study was conducted to ensure computational reliability. Modal analysis was then carried 

out to extract the first two bending mode shapes, which were used to compute modal strain energy-

based DI through the absolute value method. Various damage scenarios were simulated by reducing 

the elastic modulus, and the corresponding DIs were calculated. To estimate damage severity, a 

supervised artificial neural network (ANN) model—incorporating a Long Short-Term Memory 

(LSTM) architecture—was trained using the computed DI. Additional severity levels were inter-

polated using the cubic spline method to enhance the training dataset. The FE model was validated 

against experimental vibration data to ensure reliability of the simulation results. 

3. Results 

3.1 Damage Location Detection 

The performance of the method in detecting specific damage in the first stage is demonstrated by 

its application to a damaged case. Firstly, using the first two bending modes, the damage location 

is determined using the MSE-based damage indicator for each damage scenario. The first two bend-

ing modes of the bridge are used to calculate the 𝛽𝐴𝑉, and it is plotted across the length of the target 

bridge. The expected indication of damage locations comes from observing the DI peaks in these 

plots. Figures 6 to 8 depict bar charts displaying the absolute damage index plotted against the 

distance along the bridge for each scenario of damage with 10% severity. Figures 9 to 11 depict 

charts displaying the absolute damage index plotted against the distance along the bridge for all 

damage cases described in Table 3. These charts further support the accuracy of the damage detec-

tion procedure, as they successfully pinpoint the damage at the actual locations. These damage 

indices were calculated using data obtained from the first two bending modes. 
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Figure 8: Absolute damage index versus distance along the bridge for 10% severity. 

 

Figure 9: Absolute damage index versus distance along the bridge for 10% severity. 
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Figure 10: Absolute damage index versus distance along the bridge for 10% severity. 

The above figures demonstrate the accuracy of the MSE-based DI in identifying damage for various 

scenarios at different locations. The use of the MSE-based DI is validated through its ability to 

detect and locate structural damage accurately across multiple scenarios, as depicted in the figures. 

Figure 6 illustrates damage occurring at the center of the bridge, with a peak observed precisely at 

this central point. In Figure 6, the damage detection results highlight an evident peak at the center 

of the bridge, indicating the exact location of the damage. Similarly, Figures 7 and 8 accurately 

pinpoint damage locations, with peaks concentrated in the right-middle third and left-middle third 

regions for each damage scenario. Figures 7 and 8 further validate the effectiveness of the MSE-

based DI by showing distinct peaks in the right-middle third and left-middle third sections of the 

bridge. These peaks align with the predefined damage scenarios, demonstrating the method's capa-

bility to locate damage with precision in different regions of the bridge structure. 

      

Figure 11: Damage index vs Distance along the bridge for case 1. 
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Figure 12: Damage index vs Distance along the bridge for case 2. 

 

 

Figure 13: Damage index vs Distance along the bridge for case 3. 

The charts presented in Figures 9 to 11 illustrate the relationship between the DI and span length 

for various damage severities, ranging from 10% to 25%. In Figure 9, which represents damage 

scenario 1, damage is consistently detected at the center of the span for all severities. As the severity 

of the damage increases, the identification becomes more pronounced, with the peaks indicating 

damage becoming more prominent and higher compared to those of lower severities. Similarly, 

Figures 10 and 11 accurately pinpoint the damage locations in the right-middle third and left-middle 

third regions of the bridge, respectively. The charts show that as the severity of the damage in-

creases, the absolute values of the damage index also increase, enhancing the visibility and accu-

racy of the damage detection. Overall, these results demonstrate high accuracy in determining the 
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damage locations for all scenarios and severities, validating the effectiveness of the proposed dam-

age detection method. This consistent pattern across different figures underscores the reliability of 

the MSE-based DI employed in accurately identifying and assessing damage in the bridge structure. 

3.2 Prediction of damage severity 

The proposed methodology was further employed to assess the efficacy of mode shapes in estimat-

ing damage severity. As observed in the preceding analysis, the damage detection methodology 

accurately identified damage. To investigate the severity at the damage location, an ANN was 

trained with the data sets created using the damage scenarios stated in Table 3. Since ANN requires 

more learning data, the data sets were enhanced by applying cubic spline interpolation to the data 

extracted from the FE model. To evaluate the accuracy of the cubic spline interpolation method, 

Table 4 and Figure 12 show the actual and interpolated data for the existing four severities using 

cubic spline interpolation in Microsoft Excel, along with the percentage difference between the 

extracted and interpolated data. The beta vector for four different damage severities was initially 

assessed at the location of damage 1, and subsequently, the damage indices for 15% and 20% re-

ductions in stiffness were interpolated using the technique of cubic spline. 

Table 4 : Comparison of computed and interpolated damage index. 

 

Figure 14: Comparison of computed and interpolated damage index. 

From Table 4, the difference between the computed and interpolated DI is negligible, as the per-

centage difference is less than 1%. For severities ranging from 10% to 25%, interpolation was 

employed to generate the necessary damage index values, since training an ANN requires a sub-

stantial amount of data. Multiple datasets were generated to train the model using the neural net-

work fitting tool in MATLAB. The DI was used as the input parameter for model training, while 

Damage Severity Damage index Interpolated damage index Percentage Difference (%) 

10 1.010892557 1.010892557 

 

15 1.011392557 1.011892557 0.000494124 

20 1.012192557 1.012892557 0.00069109 

25 1.013892557 1.013892557 
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severity served as the output parameter. The dataset was divided into separate subsets for training, 

validation, and testing, as outlined in Table 5. 

Table 5 : Datasets division for training, validation, and testing. 

Data     Samples 

Training 105 

Validation 23 

Testing 23 

 

The training process produced regression results as illustrated in Figure 12, with an average coef-

ficient of determination (R-squared) of 0.998. This high correlation between the predicted severity 

values and the actual severity values highlights the model's accuracy in capturing the underlying 

relationship between the input (DI) and the output (severity) variables. 

 

Figure 15: Regression plot of different data sets of ANN. 

The use of distinct training, validation, and test datasets facilitated a comprehensive assessment of 

the model's performance across various data subsets, ensuring the reliability of the developed neural 

network model's predictive capabilities. The obtained regression results validate the effectiveness 
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of the training approach, demonstrating the model's ability to accurately predict damage severity 

based on the provided input parameters. 

4. Discussion 

This study successfully developed and validated a novel two-stage process of identifying damage 

and quantifying that damage in terms of severity in the single span steel bridges, which was used 

on the FE model of the Alamosa Canyon Bridge. By employing the MSE-based DI technique ini-

tially for locating the damage, the ANN utilized this damage to quantify it in terms of severity. The 

proposed approach shows high precision in identifying damage locations for a different range of 

damage scenarios and severities.  The suggested method demonstrates good accuracy in locating 

damage positions for a different range of damage scenarios and severities. The results shown by 

the proposed methodology also ensure that the applicability of this study in bridge health monitor-

ing and contribute significantly to structural health monitoring, especially enhancing the accuracy, 

localization of damage, and its quantification in terms of severity in steel bridge structures. 

The key findings of this research are as follows: 

 

1. The MSE-based DI precisely localized the damage on the FE model of the Alamosa Can-

yon Bridge, with results showing the damage at specific locations of bridge segments for 

all scenarios. 

2. Interpolated damage indices for severities ranging from 10% to 25% showed a small error 

of less than 1%, confirming the effectiveness of the interpolation used to extend the training 

dataset. 

3. ANNs effectively quantify the severity-based damage with an average R-squared value of 

0.998, showing a high correlation between actual severity and predicted values. 

4. The proposed method is effective for structural health monitoring, promising more efficient 

and cost-effective bridge maintenance. 

This methodology is purely based on simulation results without performing any practical or real-

time data collection work on the target bridge. To advance the findings of this study, future research 

should focus on validating the proposed method across a range of bridge configurations and condi-

tions, including varying deck configurations, material properties, and boundary conditions. Inte-

gration of real-time sensor data into the monitoring system should be explored to enhance detection 

accuracy and system responsiveness. Collaboration with bridge maintenance authorities and stake-

holders is essential to facilitate the adoption and practical implementation of the system in real-

world bridge management scenarios. Additionally, continuous refinement of the severity-based 

model is necessary to improve its predictive capabilities and adaptability to diverse bridge condi-

tions and environments. Furthermore, due to the limited scope of the current study, confidence 

intervals or error bars were not included in the regression plot (Fig. 15); however, their inclusion 

can be considered in future work. Nonetheless, this is recognized as a valuable addition and is 

recommended for consideration in future work." Moreover, consideration should be given to scal-

ing the implementation of this technology across a broader network of bridges to optimize infra-

structure maintenance practices and enhance overall public safety. Physical testing in real-world 

scenarios is also needed to validate the system's performance and reliability. 
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5. Conclusions 

The findings of this study differ from previous research by predicting damage severity using the 

MSE-based DI in the case of multi-damage scenarios for single-span steel bridges. According to 

past studies, the MSE-based DI effectively identifies damage locations but has contributed little to 

estimating the severity of the damage based on multi-damage scenarios for single-span steel bridges. 

This study addresses this gap by focusing on estimating the damage severity at identified locations, 

thereby presenting a novel contribution that effectively estimates damage severity with reduced 

computational effort. The comparative analysis demonstrates that the proposed method achieves 

desirable accuracy in both damage identification and severity prediction, offering a more efficient 

alternative to previously used methods. 

However, there are a number of limitations; these include the fact that performance may vary in 

different ways on different bridges because of bridge-specific factors like variations in material 

values, boundary conditions and deck arrangements. In addition, this research was conducted on a 

simulation based-analysis and requires a wide-reaching field testing for its practical applicability. 

 

Furthermore, the results of the conducted research on the suggested approach to damage detection 

induce the incorporation of the specified approach into the structural health monitoring procedures. 

The effectiveness of this methodology in the identification and forecast of damage of severity based 

using limited resources gives more time and cost-effective maintenance measures of bridges. This 

work holds a potentially positive outcome of incorporating the suggested method in structural test-

ing-related guidelines and the codes of practice which could serve as a usable instrument in en-

hancing the stability and resistance of the steel bridge structure infrastructure. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

SHM           Structural health monitoring  

ANN          Artificial neural networks 

MSE           Modal strain energy  

DI            Damage Index 

VBDD        Vibration-based damage detection  

FE            Finite Element  
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BPNN        Back-propagation neural network  

NLP          Multilayer perceptron 

AV           Absolute value  

MAE         Mean Absolute Error  

LSTM        Long Short-Term Memory      

MSE          Mean square error 

VBM          Vibration based method   
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